Ultrasonic Velocity Studies of Graphite and Its Intercalation Compounds


The c-axis sound velocities and attenuations for HOPG, stage 3 and stage 4 SbCl5-graphite were determined by ultrasonic techniques in the temperature range between 4 and 325 °K. The temperature variation of C33 for HOPG agrees closely with the theoretical prediction based on the Lennard-Jones interlayer potential. In SbCl5-graphite, the longitudinal sound attenuation increases sharply and the transverse sound cannot propagate for temperatures above 200 °K, indicating a commensurate-to-incommensurate in-plane phase transition. The stage dependence of C33 at low temperatures indicates that the interlayer forces beyond the nearest layers can not be neglected.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. L. Blakslee, D. G. Proctor, E. J. Seldin, G. B. Spence and T. Weng, J. Appl. Phys. 41, 3373 (1970).

    CAS  Article  Google Scholar 

  2. 2.

    W. B. Gauster, Phil. Mag. 25, 687 (1972).

    CAS  Article  Google Scholar 

  3. 3.

    J. F. Green, P. Bolsaitis and I. L. Spain, J. Phys. Chem. Solids 34, 1927 (1973).

    CAS  Article  Google Scholar 

  4. 4.

    W. B. Gauster, and I. J. Fritz, J. Appli. Phys. 45, 3309 (1974).

    CAS  Article  Google Scholar 

  5. 5.

    B. T. Kelly and M. J. Duff, Carbon 8, 77 (1970).

    CAS  Article  Google Scholar 

  6. 6.

    J. F. Green and I. L. Spain, J. Phys. Chem. Solids 34, 2177 (1973).

    CAS  Article  Google Scholar 

  7. 7.

    J.F. Green and I.L. Spain, Phys. Rev. B11, 3935 (1975); J.B. Ayasse, C. Ayache, B. Jager, E. Bonjour and I.L. Spain, Solid State Comm. 29, 659 (1979).

    Article  Google Scholar 

  8. 8.

    B. T. Kelly, Carbon 12, 535 (1974).

    CAS  Article  Google Scholar 

  9. 9.

    W. D. Ellenson, D. Semmingsen, D. Guerard, D. G. Onn and J. E. Fischer, Mat. Sci. Eng. 31, 137 (1977).

    CAS  Article  Google Scholar 

  10. 10.

    J. Rossat-Mignod, D. Fruchart, M. J. Moran, J. W. Milliken and J. E. Fischer, Synthetic Metals 2, 143 (1980).

    CAS  Article  Google Scholar 

  11. 11.

    H. Zabel and A. Magerl, Phys. Rev. B25, 2463 (1982).

    Article  Google Scholar 

  12. 12.

    J.D. Axe, C.F. Majkrzak, L. Passell, S.K. Satija, G. Dresselhaus and H. Mazurek, in Extended Abstract of the 15th Biennial Conference on Carbon (Pennsylvania State Univ., 1981), p. 52; G. Dresselhaus, R. Al-Jishi, J.D. Axe, C.F. Majkrzak, L. Passell and S.K. Satija, Solid State Commun. 40, 229 1981).

  13. 13.

    N. Wada, Phys. Rev. B 24, 1065 (1981).

    CAS  Article  Google Scholar 

  14. 14.

    D. M. Hwang, B. F. O’Donnell and A. Y. Wu, in Physics of Intercalation Compounds, ed. by L. Pietronero and E. Tossatti (Springer, Berlin, 1981), p. 193.

    Google Scholar 

  15. 15.

    G. L. Peterson, B. Chick and W. Junker, Ultrasonic Symposium Proceedings, IEEE Cat. #75 CHO 994-45U (1975).

  16. 16.

    S. E. Hardcastle and H. Zabel, J. de Physique C 6, 326 (1981).

    Google Scholar 

  17. 17.

    A. C. Bailey and B. Yates, J. Appl. Phys. 41, 5088 (1970).

    CAS  Article  Google Scholar 

  18. 18.

    E. P. Papadakis, J. Acoust. Soc. Amer. 42, 1046 (1967).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. M. Hwang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hwang, D.M. Ultrasonic Velocity Studies of Graphite and Its Intercalation Compounds. MRS Online Proceedings Library 20, 295 (1982). https://doi.org/10.1557/PROC-20-295

Download citation