Processing Effects on the Electrical and Optical Properties of Sulfur-Related Defect Centers in Silicon and Similarities to the Oxygen Donor

Abstract

The properties of sulfur-related defects in silicon are shown to differ dramatically from those that would have been expected on the basis of effective mass theory for a simple substitutional double donor. The ratio of the densities of the sulfur states as measured by capacitance-voltage techniques has been observed to vary in specimens fabricated from the same starting resistivity. Optical absorption studies have shown that the deepest sulfur level has a manifold of ground states which anneal at unequal rates at 550°C. Deep-level measurements show that the thermal emission rate at a given temperature and the variety of effects produced depends on annealing history and total sulfur density. The variability of properties of samples of sulfur-doped silicon is similar to those found for the oxygen donors in silicon, thus suggesting a chemical trend for the column VI impurities in silicon.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. K. Ghandi in: Semiconductor Power Devices (John Wiley & Sons, New York 1977) pp. 2–8.

    Google Scholar 

  2. 2.

    P. Migliorato and C. T. Elliott, Solid State Electronics 21, 443 (1978).

    CAS  Article  Google Scholar 

  3. 3.

    P. K. Chatterjee, G. W. Taylor, A. F. Tasch, Jr., and H-S. Fu, IEEE Trans. Electron Devices ED-26, 564 (1979).

    Article  Google Scholar 

  4. 4.

    D. R. Myers and W. E. Phillips, Appl. Phys. Lett. 32, 756 (1978).

    CAS  Article  Google Scholar 

  5. 5.

    D. R. Myers and W. E. Phillips, J. Elec. Mater. 8, 781 (1979).

    CAS  Article  Google Scholar 

  6. 6.

    R. A. Forman, Appl. Phys. Lett. 37 (9), 776 (1980).

    CAS  Article  Google Scholar 

  7. 7.

    S. Pantelides and C. T. Sah, Solid State Communications 11, 1713 (1972)

    CAS  Article  Google Scholar 

  8. 8.

    See, e.g., J. W. Corbett, Radiat. Eff. 6, 3 (1970).

  9. 9.

    M. G. Buehler and W. E. Phillips, Solid State Electronics 19, 777 (1976).

    CAS  Article  Google Scholar 

  10. 10.

    D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    CAS  Article  Google Scholar 

  11. 11.

    D. R. Myers, R. Y. Koyama, and W. E. Phillips, Radiat. Eff. 47, 91 (1980).

    CAS  Article  Google Scholar 

  12. 12.

    M. G. Buehler, Semiconductor Measurement Technology: Microelectronic Test Patterns: An Overview, NBS Spec. Publ. 400–6 (August 1974).

  13. 13.

    D. L. Camphausen, H. M. James, and R. D. Sladek, Phys. Rev. B2, 1899 (1970).

    Article  Google Scholar 

  14. 14.

    T. H. Ning and C. T. Sah, Phys. Rev. B4, 3482 (1971).

    Article  Google Scholar 

  15. 15.

    D. Wruck and P. Gaworzewski, phys. stat. sol. (a) 56, 557 (1979).

    CAS  Article  Google Scholar 

  16. 16.

    A. O. Evwaraye, J. Appl. Phys. 48, 3813 (1977).

    CAS  Article  Google Scholar 

  17. 17.

    D. V. Lang, H. Grimmeiss, E. Meijer, and M. Jaros, Phys. Rev. B, to be published.

  18. 18.

    See, for example, S. Braun, H. G. Grimmeiss, and K. Spann, J. Appl. Phys. 48, 3883 (1977).

  19. 19.

    A. G. Milnes in: Deep Impurities in Semiconductors, Chapter 1 (John Wiley and Sons, Inc., New York 1973).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard A. Forman.

Additional information

The work was conducted as part of the Semiconductor Technology Program at NBS. Portions of this work were supported by the Division of Electric Energy Systems, Department of Energy (Task Order A021-EES). Not subject to copyright.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Forman, R.A., Larrabee, R.D., Myers, D.R. et al. Processing Effects on the Electrical and Optical Properties of Sulfur-Related Defect Centers in Silicon and Similarities to the Oxygen Donor. MRS Online Proceedings Library 2, 79 (1980). https://doi.org/10.1557/PROC-2-79

Download citation