Skip to main content
Log in

Hybrid Gels Designed for Mullite Nucleation and Crystallization Control

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The controlled nucleation of phase transformations by seeding is an established technique for influencing transformation kinetics and sintered microstructures in ceramics. Previous studies have focused on seeding with ultrafine, solid particles having the requisite crystal characteristics for either homo- or heteroepitactic nucleation of the desired phase. Size separation of particulate seed crystals is not an efficient process and thus more recent efforts have concentrated on chemical approaches to nucleating solid phase transformations. Hybrid gels, in which two or more gels are combined to capitalize on the benefits of each, have been reported for the homoepitactic nucleation of mullite. In principle, the molecularly-mixed gel crystallizes to mullite at ∼1000°C and, in turn, acts to nucleate the colloidal gel component's transformation to mullite at higher temperatures. However, the transformation sequence and kinetics are profoundly affected by the interfacial reaction between the two gels comprising the hybrid. This paper discusses how the physical distribution and chemistry of the gel components can be manipulated for the control of mullite nucleation, crystallization and microstructure development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Sacks, H.W. Lee, and J.A. Pask, in Mullite and Mullite Matrix Composites (Ceramic Transactions, Vol. 6), edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990), p. 167.

    Google Scholar 

  2. B.B. Ghate, D.P.H. Hasselman, and R.M. Spriggs, Bull. Am. Ceram. Soc. 52 (9), 670 (1973).

    CAS  Google Scholar 

  3. D.W. Hoffman, R. Roy and S. Komarneni, J. Am. Ceram. Soc. 67 (7), 468 (1984).

    Article  CAS  Google Scholar 

  4. M.G.M.U. Ismail, Z. Nakai, K. Minegishi and S. Somiya, Int. J. High Technol. Ceram. 2, 123 (1986).

    Article  CAS  Google Scholar 

  5. N. Shinohara, D.M. Dabbs and I.A. Aksay, in Infrared and Optical Transmitting Materials (SPIE Vol. 683), edited by R.W. Schwartz (International Society for Optical Engineering, Bellingham, WA, 1986), p. 19.

    Chapter  Google Scholar 

  6. W.C. Wei and J.W. Halloran, J. Am. Ceram. Soc. 71 (3), 166 (1988).

    Article  CAS  Google Scholar 

  7. B. Sonuparlak, Adv. Ceram. Mater. 3 (3), 263 (1988).

    Article  CAS  Google Scholar 

  8. K.S. Mazdiyasni and L.M. Brown, J. Am. Ceram. Soc. 55 (11), 548 (1972).

    Article  CAS  Google Scholar 

  9. Y. Hirata, K. Sakeda, Y. Matsushita and K. Shimada, Yogyo-Kyokai-Shi 93 (9), 101 (1985).

    Google Scholar 

  10. L.A. Paulick, Y.F. Yu and T.I. Man, in Ceramic Powder Science (Advances in Ceramics, Vol. 21), edited by G.L. Messing, K.S. Mazdiyasni, J.W. McCauley and R.A. Haber (American Ceramic Society, Westerville, OH, 1987), p. 121.

    Google Scholar 

  11. K. Okada and N. Otsuka, J. Am. Ceram. Soc. 69 (9), 652 (1986)

    Article  CAS  Google Scholar 

  12. B.E. Yoldas and D.P. Partlow, J. Mater. Sci. 23, 1895 (1988).

    Article  CAS  Google Scholar 

  13. A.K. Chakravorty and D.K. Ghosh, J. Am. Ceram. Soc. 71 (11), 978 (1988).

    Article  CAS  Google Scholar 

  14. M. Kumagai and G.L. Messing, J. Am. Ceram. Soc. 68 (9), 500 (1985).

    Article  CAS  Google Scholar 

  15. J.L. McArdle and G.L. Messing, Adv. Ceram. Mater. 3 (4), 387 (1988).

    Article  CAS  Google Scholar 

  16. Y. Suwa, S. Komarneni and R. Roy, J. Mater. Sci. Lett. 5, 21 (1986).

    Article  CAS  Google Scholar 

  17. G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Res. 2 (4), 489 (1987).

    Article  CAS  Google Scholar 

  18. G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Sci. 22 (10), 3556 (1987).

    Article  CAS  Google Scholar 

  19. J.L. McArdle, G.L. Messing, L.A. Tietz and C.B. Carter, J. Am. Ceram. Soc. 72 (5), 864 (1989).

    Article  CAS  Google Scholar 

  20. J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 72 (9), 1725 (1989).

    Article  Google Scholar 

  21. R.K Iler, J. Am. Ceram. Soc. 47 (4), 194 (1964).

    Article  CAS  Google Scholar 

  22. J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 71 (4), C-222 (1988).

    Article  Google Scholar 

  23. G.W. Brindley and M. Nakahira, J. Am. Ceram. Soc. 42 (7), 319 (1959).

    Article  CAS  Google Scholar 

  24. J.C. Huling and G.L. Messing (unpublished work).

  25. J.J. Comer, J. Am. Ceram. Soc. 44 (11), 561 (1961).

    Article  CAS  Google Scholar 

  26. I.M. Low and R. McPherson, J. Mater. Sci. Lett. 72, 1196 (1988).

    Article  CAS  Google Scholar 

  27. T. J. Mroz, Jr. and J. W. Laughner, J. Am. Ceram. Soc. 72 (3), 508 (1989).

    Article  Google Scholar 

  28. W. Von Lohre and H. Urban, Ber. Dtsch. Keram. Ges. 37 (6), 249 (1960).

    Google Scholar 

  29. F.J. Klug, S Prochazka, and R.H. Doremus, J. Am. Ceram. Soc. 70 (10), 750 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huling, J.C., Messing, G.L. Hybrid Gels Designed for Mullite Nucleation and Crystallization Control. MRS Online Proceedings Library 180, 515 (1990). https://doi.org/10.1557/PROC-180-515

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-180-515

Navigation