Hybrid Gels Designed for Mullite Nucleation and Crystallization Control

Abstract

The controlled nucleation of phase transformations by seeding is an established technique for influencing transformation kinetics and sintered microstructures in ceramics. Previous studies have focused on seeding with ultrafine, solid particles having the requisite crystal characteristics for either homo- or heteroepitactic nucleation of the desired phase. Size separation of particulate seed crystals is not an efficient process and thus more recent efforts have concentrated on chemical approaches to nucleating solid phase transformations. Hybrid gels, in which two or more gels are combined to capitalize on the benefits of each, have been reported for the homoepitactic nucleation of mullite. In principle, the molecularly-mixed gel crystallizes to mullite at ∼1000°C and, in turn, acts to nucleate the colloidal gel component's transformation to mullite at higher temperatures. However, the transformation sequence and kinetics are profoundly affected by the interfacial reaction between the two gels comprising the hybrid. This paper discusses how the physical distribution and chemistry of the gel components can be manipulated for the control of mullite nucleation, crystallization and microstructure development.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.D. Sacks, H.W. Lee, and J.A. Pask, in Mullite and Mullite Matrix Composites (Ceramic Transactions, Vol. 6), edited by S. Somiya, R.F. Davis, and J.A. Pask (American Ceramic Society, Westerville, OH, 1990), p. 167.

    Google Scholar 

  2. 2.

    B.B. Ghate, D.P.H. Hasselman, and R.M. Spriggs, Bull. Am. Ceram. Soc. 52 (9), 670 (1973).

    CAS  Google Scholar 

  3. 3.

    D.W. Hoffman, R. Roy and S. Komarneni, J. Am. Ceram. Soc. 67 (7), 468 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    M.G.M.U. Ismail, Z. Nakai, K. Minegishi and S. Somiya, Int. J. High Technol. Ceram. 2, 123 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    N. Shinohara, D.M. Dabbs and I.A. Aksay, in Infrared and Optical Transmitting Materials (SPIE Vol. 683), edited by R.W. Schwartz (International Society for Optical Engineering, Bellingham, WA, 1986), p. 19.

    Google Scholar 

  6. 6.

    W.C. Wei and J.W. Halloran, J. Am. Ceram. Soc. 71 (3), 166 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    B. Sonuparlak, Adv. Ceram. Mater. 3 (3), 263 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    K.S. Mazdiyasni and L.M. Brown, J. Am. Ceram. Soc. 55 (11), 548 (1972).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Hirata, K. Sakeda, Y. Matsushita and K. Shimada, Yogyo-Kyokai-Shi 93 (9), 101 (1985).

    Google Scholar 

  10. 10.

    L.A. Paulick, Y.F. Yu and T.I. Man, in Ceramic Powder Science (Advances in Ceramics, Vol. 21), edited by G.L. Messing, K.S. Mazdiyasni, J.W. McCauley and R.A. Haber (American Ceramic Society, Westerville, OH, 1987), p. 121.

    Google Scholar 

  11. 11.

    K. Okada and N. Otsuka, J. Am. Ceram. Soc. 69 (9), 652 (1986)

    CAS  Article  Google Scholar 

  12. 12.

    B.E. Yoldas and D.P. Partlow, J. Mater. Sci. 23, 1895 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    A.K. Chakravorty and D.K. Ghosh, J. Am. Ceram. Soc. 71 (11), 978 (1988).

    CAS  Article  Google Scholar 

  14. 14.

    M. Kumagai and G.L. Messing, J. Am. Ceram. Soc. 68 (9), 500 (1985).

    CAS  Article  Google Scholar 

  15. 15.

    J.L. McArdle and G.L. Messing, Adv. Ceram. Mater. 3 (4), 387 (1988).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Suwa, S. Komarneni and R. Roy, J. Mater. Sci. Lett. 5, 21 (1986).

    CAS  Article  Google Scholar 

  17. 17.

    G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Res. 2 (4), 489 (1987).

    CAS  Article  Google Scholar 

  18. 18.

    G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Sci. 22 (10), 3556 (1987).

    CAS  Article  Google Scholar 

  19. 19.

    J.L. McArdle, G.L. Messing, L.A. Tietz and C.B. Carter, J. Am. Ceram. Soc. 72 (5), 864 (1989).

    CAS  Article  Google Scholar 

  20. 20.

    J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 72 (9), 1725 (1989).

    Article  Google Scholar 

  21. 21.

    R.K Iler, J. Am. Ceram. Soc. 47 (4), 194 (1964).

    CAS  Article  Google Scholar 

  22. 22.

    J.C. Huling and G.L. Messing, J. Am. Ceram. Soc. 71 (4), C-222 (1988).

    Article  Google Scholar 

  23. 23.

    G.W. Brindley and M. Nakahira, J. Am. Ceram. Soc. 42 (7), 319 (1959).

    CAS  Article  Google Scholar 

  24. 24.

    J.C. Huling and G.L. Messing (unpublished work).

  25. 25.

    J.J. Comer, J. Am. Ceram. Soc. 44 (11), 561 (1961).

    CAS  Article  Google Scholar 

  26. 26.

    I.M. Low and R. McPherson, J. Mater. Sci. Lett. 72, 1196 (1988).

    CAS  Article  Google Scholar 

  27. 27.

    T. J. Mroz, Jr. and J. W. Laughner, J. Am. Ceram. Soc. 72 (3), 508 (1989).

    Article  Google Scholar 

  28. 28.

    W. Von Lohre and H. Urban, Ber. Dtsch. Keram. Ges. 37 (6), 249 (1960).

    Google Scholar 

  29. 29.

    F.J. Klug, S Prochazka, and R.H. Doremus, J. Am. Ceram. Soc. 70 (10), 750 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Huling.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huling, J.C., Messing, G.L. Hybrid Gels Designed for Mullite Nucleation and Crystallization Control. MRS Online Proceedings Library 180, 515 (1990). https://doi.org/10.1557/PROC-180-515

Download citation