Fractal Structure and Fractal Time in Silica Sol-Gels


Near the gel point, light scattering studies of silica sol-gels reveal fractal clusters whose size diverges as a power law, in accord with the predictions of percolation theory. More surprising is the appearance of a fractal time description of the dynamics of these clusters. This novel dynamics has recently been revealed by quasielastic light scattering from the density fluctuations that occur at the sol-gel transition. Since the relaxation of fluctuations in these branched polymer systems is self-similar, decay processes occur on all time scales (fractal time), and average decay times diverge. An interpretation of this observation will be presented that relies on a length-scale-dependent viscosity and the geometrical self-similarity of the sol-gel transition. The scattering theory is extended to the calculation of time- and frequency-dependent viscoelastic properties, as well as mechanical properties such as the shear modulus, steady state creep compliance, and viscosity. The viscoelastic predictions are found to be in good agreement with experimental data.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985).

    Google Scholar 

  2. 2.

    M. Daoud and J. E. Martin, in The Fractal Approach to the Chemistry of Disordered Systems: Polymers, Colloids, Surfaces, edited by D. Avnir.

  3. 3.

    D. Stauffer, A. Coniglio and M. Adam, in Advances in Polymer Science 44 (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  4. 4.

    P. G. de Gennes, Scaling Concepts in Polymer Physics, (Cornell, New York, 1979).

    Google Scholar 

  5. 5.

    J. E. Martin and J. P. Wilcoxon, Phys. Rev A 39, 252 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    J. E. Martin and J. P. Wilcoxon, Phys. Rev. Lett. 61, 373 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    J. E. Martin and B. J. Ackerson, Phys. Rev. A 31, 1180 (1985).

    CAS  Article  Google Scholar 

  8. 8.

    J. E. Martin, J. Appl. Cryst.19, 25 (1986); also J. E. Martin and A. J. Hurd, J. Appl. Cryst. 20, 61 (1986).

    CAS  Article  Google Scholar 

  9. 9.

    D. W. Schaefer and K. D. Keefer, Phys. Rev. Lett. 53, 1383 (1984).

    CAS  Article  Google Scholar 

  10. 10.

    J. Isaacson and T. C. Lubensky, J. Phys. (Paris) 41, L469 (1980).

    Article  Google Scholar 

  11. 11.

    P. -G. de Gennes, C. R. Acad. Sci. Paris 291, 17 (1980).

    CAS  Google Scholar 

  12. 12.

    J. E. Martin, in Time Dependent Effects in Disordered Materials, edited by R. Pynn and Tormod Riste, NATO ASI Series, Physics Vol. 167 (Plenum, New York, 1987).

    Google Scholar 

  13. 13.

    J. E. Martin and K. D. Keefer, Phys. Rev. A 34, 4988 (1986).

    CAS  Article  Google Scholar 

  14. 14.

    J. E. Martin, J. P. Wilcoxon, and J. Odinek, to appear in Phys. Rev. A.

  15. 15.

    J. E. Martin, J. Sullivan and J. P. Wilcoxon, unpublished results.

  16. 16.

    J. E. Martin, J. P. Wilcoxon and D. Adolf, Phys. Rev. A 36 1803 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    M. Daoud, F. Family and G. Jannink, J. Physique Lett. 45, 199 (1984).

    CAS  Article  Google Scholar 

  18. 18.

    M. Daoud and L. Leibler, Macromol. 21, 1497 (1988).

    CAS  Article  Google Scholar 

  19. 19.

    J. E. Martin and J. Odinek, preprint.

  20. 20.

    R. A. Assink and B. D. Kay, J. Non-Cryst. Solids 107, 35 (1988).

    CAS  Article  Google Scholar 

  21. 21.

    B. D. Kay and R. A. Assink, J. Non-Cryst. Solids 104, 112 (1988).

    CAS  Article  Google Scholar 

  22. 22.

    J. E. Martin, J. Phys. A: Math. Gen. 18, L207 (1985).

    CAS  Article  Google Scholar 

  23. 23.

    F. Chambon and H. H. Winter, Polym. Bull. 13, 499 (1985); also H. H. Winter, P. Morganelli and R. Chambon, Macromol. 21, 532 (1988).

    CAS  Article  Google Scholar 

  24. 24.

    J. E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. Lett. 61, 2620 (1988); also J. E. Martin, D. Adolf, and J. P. Wilcoxon, Phys. Rev. A 39, 1325 (1989).

    CAS  Article  Google Scholar 

  25. 26.

    J. E. Martin, in Atomic and Molecular Processing of Electronic and Ceramic Materials, Proc. of the Twenty-Third Conference on Ceramic Science, editors I. Aksay, T. Stoebe, G. McVay and J. Wager, Mats. Res. Soc. (1987).

  26. 27.

    B. B. Mandelbrot, in The Fractal Geometry of Nature, pg. 247 (Freeman, New York, 1983).

    Google Scholar 

  27. 28.

    J. E. Martin and F. Leyvraz, Phys. Rev. A 34, 2346 (1986).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to James E. Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, J.E., Wilcoxon, J. Fractal Structure and Fractal Time in Silica Sol-Gels. MRS Online Proceedings Library 180, 199 (1990).

Download citation