Nonlinear Optical Polymers: Challenges and Opportunities in Photonics

Abstract

In polymer structures, highly correlated virtual excitations of the π-electrons are responsible for the exceptionally large nonresonant nonlinear optical responses observed. Extremely large resonant nonlinear optical responses are also achievable in certain π-electron systems, which can be treated as optical Bloch systems. In addition to their obvious scientific importance, these large optical nonlinearities potentially make possible the implementation of powerful, new nonlinear optical devices and systems. After a description of nonlinear optical processes in polymers, two examples are presented. First, saturable absorption and optical bistability in ultrathin organic polymer films are described, illustrative of resonant third order processes. Saturable absorption studies of glassy polymer films consisting of quasi two-dimensional conjugated disc-like structures of silicon naphthalocyanine demonstrate that on-resonance the system behaves as an optical Bloch system with a linear absorptivity coefficient α0 of 1 × 105 cm−1 and an intensity dependent refractive index n2 of 1 × 104 cm2/kW in the wavelength range of standard laser diodes. A resonant nonlinear optical response of π-electron excitations provides the nonlinear interaction essential to the onset of bistability. Electronic absorptive optical bistability is observed on a nanosecond time scale in a nonlinear Fabry-Perot interferometer employing the saturably absorbing naphthalocyanine film as the nonlinear optical medium. As a second example, the nonresonant second order process of linear electrooptic effects in poled polymer films, is discussed. For such a second order nonlinear optical process, the broken global centrosymmetry is achieved by electric field poling of a thin polymer film. With high electrooptic coefficients of 10–50 pm/V and low dielectric constants of 3–4, poled polymers have potentially great advantages over inorganic crystals as electrooptic materials. As one device illustration, the application of poled polymers in electrooptic waveguide operations is presented.

References

  1. [1]

    See for example, Organic Materials for Nonlinear Optics, Hann, R.A. and Bloor, D. ed., Roy. Soc. Chem., London (1989)

  2. [2]

    Thackara, J.I., Lipscomb, G.F., Stiller, M.A., Ticknor, A.J., and Lytel, R., Appl. Phys. Lett. 52, 1031 (1988)

    CAS  Article  Google Scholar 

  3. [3]

    Wu, J.W., Heflin, J.R., Norwood, R.A., Wong, K.Y., Zamani-Khamiri, O., Garito, A.F., Kalyanaraman, P., and Sounik, J., J. Opt. Soc. Am. B6, 707 (1989)

    Article  Google Scholar 

  4. [4]

    Anderson, P.W., Halperin, B.I., and Varma, C, Philo. Mag. 25, 1 (1972)

    CAS  Article  Google Scholar 

  5. [5]

    Nicolis, G. and Prigogine, I., Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations, Wiley, New York (1977)

    Google Scholar 

  6. [6]

    Bonifacio, R. and Lugiato, L.A., Phys. Rev. Lett. 40, 1023 (1978)

    CAS  Article  Google Scholar 

  7. [7]

    Wu, J.W., Ph.D. dissertation, University of Pennsylvania, University Microfilms International, Ann Arbor, Michigan (1989)

  8. [8]

    Orr, B.J. and Ward, J.F., Mol. Phys. 20, 513 (1971)

    CAS  Article  Google Scholar 

  9. [9]

    Heflin, J.R., Wong, K.Y., Zamani-Khamiri, O., and Garito, A.F., Phys. Rev. B38, 1573 (1988)

    Article  Google Scholar 

  10. [10]

    See, for example, Gibbs, H.M., Optical Bistability - Controlling Light with Light, Academic, New York (1985)

    Google Scholar 

  11. [11]

    Kubo, R., in Stochastic Processes in Chemical Physics, ed. Shuler, K.E., Advances in Chemical Physics, Prigogine, I. and Rice, S.A. eds. Wiley, New York (1969) vol. 15

  12. [12]

    Zwanzig, R., J. Chem. Phys. 33, 1338 (1960); Phys. Rev. 124, 983 (1961)

    CAS  Article  Google Scholar 

  13. [13]

    Bums, M.J., Liu, W.K., and Zewail, A.H. in Springer Series in Chemical Physics, vol. 3: Spectroscopy and Excitation Dynamics of Condensed Molecular Systems, North-Holland, New York (1983)

    Google Scholar 

  14. [14]

    Volker, S. and Macfarlane, R., IBM J. Res. Develop. 23, 547 (1970)

    Article  Google Scholar 

  15. [15]

    McCumber, D.E. and Sturge, M.D., J. Appl. Phys. 34, 1682 (1963)

    CAS  Article  Google Scholar 

  16. [16]

    See, for example, Gibbs, H.M., Optical Bistability - Controlling Light with Light, Academic, New York (1985)

    Google Scholar 

  17. [17]

    Landau, L.D. and Lifshitz, E.M., Statistical Physics, Part 1, 3rd ed. Pergamon, Oxford (1978)

  18. [18]

    See, for example, Nonlinear Optical Properties of Polymers, MRS Symposium Proceedings, Vol. 109, A.J. Heeger, J. Orenstein and D.R. Ulrich eds., 1988.

  19. [19]

    Lalama, S.J. and Garito, A.F., Phys. Rev. A20 1179 (1979).

    Article  Google Scholar 

  20. [20]

    See, for example, Pugh, D. and Morley, J.O. in reference 1.

  21. [21]

    Singer, K.D. and Garito, A.F., J. Chem. Phys. 75, 3572 (1981).

    CAS  Article  Google Scholar 

  22. [22]

    Teng, C.C. and Garito, A.F., Phys. Rev. Lett. 50, 350 (1983).

    CAS  Article  Google Scholar 

  23. [23]

    Lipscomb, G.F., Garito, A.F., and Narang, R.S., Appl. Phys. Lett., 38, 663 (1981).

    CAS  Article  Google Scholar 

  24. [24]

    Lipscomb, G.F., Garito, A.F., and Narang, R.S., J. Chem. Phys., 75, 1509 (1981).

    CAS  Article  Google Scholar 

  25. [25]

    Singer, K.D., Sohn, J.E., and Lalama, S.J., Appl. Phys. Lett. 49, 248 (1986), and Singer, K.D., Kuzyk, M.G., and Sohn, J.E., J. Opt. Soc. Am. B4, 968 (1987).

    CAS  Article  Google Scholar 

  26. [26]

    Williams, D.J., in Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, Chemla , D. and Zyss, J. ed., Academic Press, NY (1987), p. 405.

    Google Scholar 

  27. [27]

    Krotky, S.K. and Alferness, R.C. in Integrated Optical Circuits and Components, Hutchenson, L.D. ed., Marcel Dekker Inc., New York, 1987, p.203.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. F. Garito.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garito, A.F., Wu, J.W., Lipscomb, G.F. et al. Nonlinear Optical Polymers: Challenges and Opportunities in Photonics. MRS Online Proceedings Library 173, 467–486 (1989). https://doi.org/10.1557/PROC-173-467

Download citation