Recent Advances in Morphology and Mechanical Properties of Rigid-Rod Molecular Composites

Abstract

Rigid-rod molecular composites are a new class of high performance structural polymers which have high specific strength and modulus and also high thermal and environmental resistance. The concept of using a rigid-rod, extended chain polymer to reinforce a ductile polymer matrix at the molecular level has been demonstrated with morphological and mechanical property studies for aromatic heterocyclic systems, but new materials systems and processing techniques will be required to produce thermoplastic or thermoset molecular composites. Improved characterization and modeling will also be required. In this regard, new results on modeling of mechanical properties of molecular composites are presented and compared with experimental results. The Halpin-Tsai equations from ‘shear-lag’ theory of short fiber composites predict properties reasonably well when using the theoretical modulus of rigid-rod molecules in aromatic heterocyclic systems, but newer matrix systems will require consideration of matrix stiffness, desired rod aspect ratio, and rod orientation distribution. Application of traditional and newer morphological characterization techniques are discussed. The newer techniques include: Raman light scattering, high resolution and low voltage SEM, parallel EELS in TEM, synchrotron radiation in X-ray scattering, and ultrasound for integrity studies. The properties of molecular composites and macroscopic composites are compared and it is found that excellent potential exists for use of molecular composites in structural applications including engineering plastics, composite matrix resins, and as direct substitutes for fiber reinforced composites.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T.E. Helminiak, F.E. Arnold, and CL. Benner, Am. Chem. Soc. Poly. Preprints, 16, 659 (1975).

    CAS  Google Scholar 

  2. 2.

    T. E. Helminiak, CL. Benner, F. Arnold, G. Husman, U.S. Pat. Appl. 902, 525 (1978).

    Google Scholar 

  3. 3.

    W-F. Hwang, D.Wiff, C.Benner, T.Helminiak, J. Macromol. Sci. Phys., B22, 231 (1983).

    CAS  Article  Google Scholar 

  4. 4.

    J. Wolfe, “Polybenzthiazole and Polybenzoxazole Review” in Encyclopedia of Polymer Science and Engineering, 2nd Edition, J. Wiley & Sons, New York, 1988.

  5. 5.

    G. Husman, T.E. Helminiak, W.W. Adams, D. Wiff, and C.L. Benner, Am. Chem. Soc. Symp. Ser., 132, 203 (1980).

    CAS  Google Scholar 

  6. 6.

    R.M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979.

  7. 7.

    S. Donaldson, private communication.

  8. 8.

    P.J. Flory, Proc. Roy. Soc. London, A234, 73 (1956).

    Google Scholar 

  9. 9.

    S.J. Krause, T. Haddock, G.E. Price, P.G. Lenhert, J.F. O’Brien, T.E. Helminiak, and W.W. Adams, J. Polymer Sci. - Polym. Physics Edition, 24, 1991 (1986).

    CAS  Article  Google Scholar 

  10. 10.

    R.J. Day, I.M. Robinson, M. Zakikhani, and R.J. Young, Polymer, 28, 1833 (1988).

    Article  Google Scholar 

  11. 11.

    R.J. Young, private communication.

  12. 12.

    W-F. Hwang, D.Wiff, C.Verschoore, G. Price, T.Helminiak, and W.W. Adams, Poly. Eng. and Sci., 23, 784 (1983).

    CAS  Article  Google Scholar 

  13. 13.

    T.T. Tsai, F.E. Arnold, and W.F. Hwang, Am. Chem. Soc. Poly. Preprints, 26, 144 (1985).

    CAS  Google Scholar 

  14. 14.

    S.J. Krause, T.B. Haddock, P.G. Lenhert, W-F. Hwang, G. Price, T.E. Helminiak, J.F. O’Brien, and W.W. Adams, Polymer, 29, 1353 (1988).

    Google Scholar 

  15. 15.

    W.F. Hwang, D.R. Wiff, T.E. Helminiak, and W.W. Adams, ACS Preprints, Org. Coat. and Plast. Chem., 48, 922 (1983).

    Google Scholar 

  16. 16.

    S.M. Wickliffe, M.F. Malone, and R.J. Farris, J. Appl. Polym. Sci., 34, 931 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    O. Nehme, C. Gabriel, R.J. Farris, E.L. Thomas, and M. Malone, J. Appl. Polym. Sci., 35, 1955 (1988).

    CAS  Article  Google Scholar 

  18. 18.

    S.J. Krause and W.W. Adams, Elect. Mic. Soc. Am. Proc., 46, 748 (1988).

    Google Scholar 

  19. 19.

    H.C Chauh, T. Kyu, and T.E. Helminiak, Am. Chem. Soc. Poly. Eng. Sci. Proc., 59, 1106 (1988)

    Google Scholar 

  20. 20.

    T. Nishihara, H. Mera, and K. Matsuda, Am. Chem. Soc. Poly. Eng. Sci. Proc., 55, 821 (1986).

    CAS  Google Scholar 

  21. 21.

    H.C. Chauh, L.S. Tan, and F.E. Arnold, Poly. Eng. and Sci., 29, 107 (1989).

    Article  Google Scholar 

  22. 22.

    M. Takayanagi, T. Ogata, M. Morikawa, T. Kai, J. Macro. Sci. Phys., B17, 519 (1980).

    Google Scholar 

  23. 23.

    S.J. Krause, W.W. Adams, S. Kumar, T. Reilly, and T. Suzuki Elect. Mic. Soc. Am. Proc., 45, 466 (1987).

    Google Scholar 

  24. 24.

    S.J. Krause, W.W. Adams, and D.C Joy, Elect. Mic. Soc. Am. Proc., 47, 336 (1989).

    Google Scholar 

  25. 25.

    O.L. Krivanek, Elect. Mic. Soc. Am. Proc., 46, 660 (1988).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Krause.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krause, S.J., Hwang, WF. Recent Advances in Morphology and Mechanical Properties of Rigid-Rod Molecular Composites. MRS Online Proceedings Library 171, 131–139 (1989). https://doi.org/10.1557/PROC-171-131

Download citation