InGaAs/InP Multiquantum well Structures Grown by Trichloride Vapor Phase Epitaxy

Abstract

Long wavelength (l.3pm<X<l.551un) InGaAs/InP multiquantum well (MQW) PIN structures in which the quantum confined Stark effect can be observed, are of particular interest because of their potential for high modulation contrast ratios and high speed operation. The chemistry of trichloride VPE lends itself to the growth of high purity InGaAsP heterostructures which are essential for the realization of high performance optical modulators and switches. In this study, we investigate the application of multi-frit trichloride VPE for the highly uniform epitaxial growth of InGaAs/InP MQW structures on two-inch InP substrates for advanced photonic device applications. The growth of MQW structures with various well thicknesses was studied as was the effect of substrate orientation. The structures have been characterized by infrared absorption and photoluminescence spectroscopy, cross-sectional transmission electron microscopy and double crystal x-ray diffraction.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. H. Olsen, in Vapor-phase Epitaxy of GaInAsP in GaInAsP Alloy Semiconductors, edited by T. P. Pearsall (John Wiley, New York, 1982), p. 11.

    Google Scholar 

  2. 2.

    E. H. C. Parker, The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 1985).

    Google Scholar 

  3. 3.

    M. Razeghi, in Semiconductors and Semimetals, Vol. 22A, edited by W. T. Tsang (Academic Press, San Diego, 1985), p. 299.

    Google Scholar 

  4. 4.

    W. T. Tsang, in Beam Processing Technologies, edited by N. G. Einspruch et al. (Academic Press, New York, in press).

  5. 5.

    M. B. Panish, H. Temkin and S. Sumski, J. Vac. Sci. Techol. 133, 657 (1985).

    Article  Google Scholar 

  6. 6.

    D. W. Shaw, in Crystal Growth, Vol. 1, edited by C. H. L. Goodman (Plenum, New York, 1974), pp. 1–48.

    Google Scholar 

  7. 7.

    D. W. Shaw, J. Phys. Chem. Solids 36, 111 (1975).

    CAS  Article  Google Scholar 

  8. 8.

    D. W. Shaw, J. Cryst. Growth 8, 117 (1971).

    CAS  Article  Google Scholar 

  9. 9.

    H. M. Cox, A. S. Prior and V. G. Kerimidas, in Proc. 10th Intern. Symp. on GaAs and Related Compounds, 1982, Inst. Phys. Conf. Sec. 65. edited by G. E. Stillman (The Institute of Physics, Bristol and London, 1982), pp. 133–140.

    Google Scholar 

  10. 10.

    P. Vohl, J. Cryst. Growth 54, 101 (1981).

    CAS  Article  Google Scholar 

  11. 11.

    R. C. Clarke, J. Cryst. Growth 54, 88 (1981).

    CAS  Article  Google Scholar 

  12. 12.

    H. M. Cox, M. A. Koza, V. G. Kerimidas and M. J. Young, J. Cryst. Growth 73, 523 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    J. N. Hollenhorst, D. T. Ekholm, J. M. Geary, V. D. Mattera, Jr., R. Pawelek, in High Frequency Analog Communications, SPIE Proc. 995 (Society of Photo-Optical Instrumentation Engineers, Bellingham, 1989) p. 53.

    Google Scholar 

  14. 14.

    A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham and L. M. F. Chirovsky, Appl. Phys. Lett. 52, 1419 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, V. Koren, and B. I. Miller, Appl. Phys. Lett. 50, 1010 (1987).

    CAS  Article  Google Scholar 

  16. 16.

    H. Temkin, D. Gershoni and M. B. Panish, Appl. Phys. Lett. 50, 1776 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    M. A. Z. Rejman-Greene, E. G. Scott, and E. McGoldrick, Electron Lett. 24, 1583 (1988).

    Article  Google Scholar 

  18. 18.

    V. D. Mattera, Jr., F. Capasso, J. Allam, A. L. Hutchinson, J. Dick, J. M. Brown, and A. Westphal, J. Appl. Phys. 60, 2609 (1986).

    CAS  Article  Google Scholar 

  19. 19.

    H. M. Cox, J. Cryst. Growth 69, 641 (1984).

    CAS  Article  Google Scholar 

  20. 20.

    H. M. Cox, P. C. Morais, D. M. Hwang, P. Bastos, T. J. Gmitter, L. Nazar, J. M. Worlock, E. Yablonovitch and S. G. Hummel, in Proceedings of 1988, Int. GaAs and Rel Compound Conf. (Institute of Physics, Bristol and London, in press).

  21. 21.

    P. C. Morals, H. M. Cox, P. L. Bastos, D. M. Hwang, J. M. Worlock, E. Yablonovitch, and R. E. Nahory, Appl. Phys. Lett. 54, 442 (1989).

    Article  Google Scholar 

  22. 22.

    J. M. Vandenberg, R. A. Hamm, M. B. Panish, and H. Temkin, J. Appl. Phys. 62, 1278 (1987).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. W. Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, K.W., Mattera, V.D., Tai, K. et al. InGaAs/InP Multiquantum well Structures Grown by Trichloride Vapor Phase Epitaxy. MRS Online Proceedings Library 145, 85–90 (1989). https://doi.org/10.1557/PROC-145-85

Download citation