Structural and Chemical Imaging of Superconductors and Semiconductors by High-Resolution Stem


In this paper a new method for high-resolution imaging of a crystal lattice is presented, based on high-angle electron scattering in a scanning transmission electron microscope (STEM). An electron probe of atomic dimensions is scanned over the sample and the electron flux scattered through large angles measured by an annular detector and used to form an image. The detector integrates over a large range of angles and therefore replaces the coherent phase contrast of conventional high resolution TEM with the strong atomic number or Z-contrast characteristic of high angle Rutherford scattering. These characteristics make the image entirely complementary to the conventional image, ideal for studying the atomic structure and chemistry of defects and interfaces. Examples of the high Tc superconductors, epitaxial Ge on Si, and Si1−xGex/Si strained layer superlattices are shown, and a simple approximate method of image simulation is presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    O. J. Scherzer, J. Appl. Phys. 20, 20 (1949).

    CAS  Article  Google Scholar 

  2. 2.

    M. M. J. Treacy, J. Microsc. Spectrosc. Electron. 7, 511 (1982).

    CAS  Google Scholar 

  3. 3.

    M. M. J. Treacy, J. Microsc. (in press).

  4. 4.

    S. J. Pennycook and J. Narayan, Appl. Phys. Lett. 45, 385 (1984).

    CAS  Article  Google Scholar 

  5. 5.

    S. J. Pennycook, S. D. Berger, and R. J. Culbertson, J. Microscopy 144, 229 (1986).

    Article  Google Scholar 

  6. 6.

    S. J. Pennycook, R. J. Culbertson, and S. D. Berger, Mat. Res. Soc. Symp. Proc. 100, 411 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    S. J. Pennycook and L. A. Boatner, Nature 336, 565 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    H. Fleischmann, Z. Naturforsch 151a, 1090 (1960).

    Article  Google Scholar 

  9. 9.

    P. A. Doyle and P. S. Turner, Acta Cryst. A24, 390 (1969).

    Google Scholar 

  10. 10.

    H. W. Zandbergen, R. Gronsky, and G. Thomas, Phys. Stat. Sol. (a) 105, 207 (1988).

    CAS  Article  Google Scholar 

  11. 11.

    A. F. Marshall et al., Phys. Rev. B 37, 9353 (1988).

    CAS  Article  Google Scholar 

  12. 12.

    D. B. Geohegan et al., J. Mater. Res. 3, 1169 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    E. J. Kirkland, R. F. Loane, and J. Silcox, Ultramicroscopy 23, 77 (1987).

    Article  Google Scholar 

  14. 14.

    M. Pan and J. M. Cowley, Ultramicroscopy 26, 205 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    S. J. Pennycook, Scanning Microscopy 2, 21 (1988).

    CAS  Google Scholar 

  16. 16.

    S. J. Pennycook, Ultramicroscopy (in press).

  17. 17.

    D. Chems, A. Howie, M. H. Jacobs, Z. Naturforsch. 28a, 565 (1973).

    Article  Google Scholar 

  18. 18.

    O. W. Holland, C. W. White, D. Fathy, Appl. Phys. Lett. 51, 520 (1987).

    CAS  Article  Google Scholar 

  19. 19.

    J. Lockwood, M. W. C. Dharma-Wardana, G. C. Aers, and J. M. Baribeau, Appl. Phys. Lett. 52, 2040 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. J. Pennycook.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pennycook, S.J. Structural and Chemical Imaging of Superconductors and Semiconductors by High-Resolution Stem. MRS Online Proceedings Library 139, 39–44 (1988).

Download citation