Low-Temperature Organometallic Chemical Vapor Deposition of Transition Metals


A variety of transition-metal films have been grown by organometallic chemical vapor deposition (OMCVD) at low temperatures using hydrocarbon or hydrido-carbonyl metal complexes as precursors. The vapors of the metal complexes are transported with argon as the carrier gas, adding H2 to the stream shortly before contact with a heated substrate.

High-purity platinum films have been grown using (η5−C5H5)PtMe3 [1] or (η5−CH3C5H4)PtMe3 [2] at substrate temperatures of 180°C or 120°C, respectively. The incorporation of a methyl substituent on the cyclopentadienyl ligand decreases the melting point of the organoplatinum complex from 106°C [1] to 30°C [2] and increases the vapor pressure substantially. Film deposition also occurs at a lower substrate temperature. Analyses by X-ray diffraction (XRD), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) indicate that the films are well crystallized and do not contain any observable impurities after sputter cleaning.

The substrate temperatures for the first appearance of other transition-metal films from organometallic precursors are as follows (°C): Rh(η3−C3H5)3 (120/Si), Ir(η3-C3H5)3 (100/Si), HRe(CO)5 (130/Si) and Ni(η5−CH3C5H4)2 (190/glass, 280/Si). These films are essentially amorphous and contain trace oxygen impurities (< 2%), except for the Re film, which was 10% oxygen and 20%carbon.

This is a preview of subscription content, access via your institution.


  1. 1.

    M.L. Green and R.A. Levy, J. Metals, 37, 63 (1985) and references therein.

  2. 2.

    A.D. Berry, DJ. Brown, R. Kaplan and E.J. Cukauskas, J.Vac.Sci.Tech. A4, 21 (1986).

    Google Scholar 

  3. 3.

    M.E. Gross and K.J. Schnoes, Proc. 10th Intl. Conf. on Chemical Vapor Deposition, 759 (1987).

  4. 4.

    Y. Pauleau, ibid., 685 (1987).

  5. 5.

    M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes and D. Brasen, J. Electrochem. Soc. 132, 2677 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    (a) H.D. Kaesz, J. Organomet. Chem. 200, 145 (1980); (b) Y.J. Chen, H.D. Kaesz, H. Thridandam, and R.F. Hicks, Appl. Phys. Lett. 53, 1591 (1988).

    Article  Google Scholar 

  7. 7.

    Yu. A. Kaplin, G.V. Belysheva, S.F. Zhil’tsov, G.A. Domrachev, and L.S. Chernyshova, J. Gen. Chem. (USSR), 50, 100 (1980); Zhur.Obsch.Xhimii 50, 118 (1980).

    CAS  Google Scholar 

  8. 8.

    J.E. Gozum, D.M. Pollina, J.D. Jensen and G.S. Girolami, J. Amer. Chem. Soc. 110, 2688 (1988).

    CAS  Article  Google Scholar 

  9. 9.

    S.D. Robinson, B.L. Shaw, J. Chem. Soc. 277, 1529 (1965).

    Google Scholar 

  10. 10.

    H.P. Fritz, K. Schwarzhans, J. Organomet.Chem. 5, 181 (1966).

    CAS  Article  Google Scholar 

  11. 11.

    J.C. Baldwin and W.C. Kaska, Inorg. Chem. 14, 2020 (1975).

    CAS  Article  Google Scholar 

  12. 12.

    J. Powell and B.L. Shaw, J. Chem.Soc. A, 583 (1968).

    Article  Google Scholar 

  13. 13.

    P. Chini and S. Martinengo, Inorg. Chem. 6, 837 (1967).

    CAS  Article  Google Scholar 

  14. 14.

    M.A. Urbancic and J.R. Shapley, Inorg. Synth. 25, in press.

  15. 15.

    S.P. Schmidt, W.C. Trogler and F. Basolo, Inorg. Synth. 23, 40 (1985).

    Google Scholar 

  16. 16.

    J.F. Cardes, Chem Ber. 95, 3084 (1962).

    Article  Google Scholar 

  17. 17.

    F.H. Kohler, J. Organomet. Chem. 110, 235 (1976).

    Article  Google Scholar 

  18. 18.

    G.T. Stauf, D.C. Driscoll, P.A. Dowben, S. Barfuss and M. Grade, Thin Solid Films, 153, 421 (1987).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Herbert D. Kaesz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaesz, H.D., Williams, R.S., Hicks, R.F. et al. Low-Temperature Organometallic Chemical Vapor Deposition of Transition Metals. MRS Online Proceedings Library 131, 395 (1988). https://doi.org/10.1557/PROC-131-395

Download citation