Low-Defect, High-Quality Simox Produced By Multiple Oxygen Implantation with Substoichiometric Total Dose


This work addresses the formation of Separation by IMplantation of OXygen (SIMOX) structures by multiple oxygen implantation into silicon and high temperature annealing. We observed no threading dislocation defects in the several plane view TEM and XTEM micrographs of each of the samples implanted with a single dose of up to 8 x 1017 0+/cm2. We also demonstrated that with a multiple low-dose (3 to 4 x 1017 0+/cm2) oxygen implantation and high temperature annealing process, we are able to produce continuous and uniform buried SiO2 layers with a total dose of 1.1 x 1018 0+/cm2 (about 60% of the total dose for standard SIMOX). The density of defects is about 105/cm2. There are no silicon islands in the buried layer, no Si02 precipitates in the silicon top layer, and the Si-SiO2 interfaces are sharp and smooth. SIMOX material with a high-quality Si top layer and a continuous buried layer has been produced with a total dose of 7 x 10l7 0+/cm2 (40% of the total dose for standard SIMOX) and a two-step process. However, in this case there are a few Si islands present in the buried SiO2 layer.

This is a preview of subscription content, access via your institution.


  1. 1.

    R.F. Pinizzotto, Mat. Res. Soc. Symp. Proc.. 27, 265 (1984).

    CAS  Article  Google Scholar 

  2. 2.

    B.Y. Tsaur, Mat. Res. Soc. Symp. Proc.. 35, 641 (1985).

    CAS  Article  Google Scholar 

  3. 3.

    P.L.F. Hemment, Mat. Res. Soc. Symp. Proc. 53 (1986).

  4. 4.

    K. Izuml, Nucl. Instr. and Meth.. B21, 124 (1987).

    Article  Google Scholar 

  5. 5.

    J.R. Davis, K.J. Reeson, P.L.F. Hemment, and CD. Marsh, IEEE Electron Dev. Lett. EDL-8 (7), 291 (1987).

  6. 6.

    R.F. Pinizzotto, B.L. Vaandrager, S. Matteson, H.W. Lam, S.D.S. Malhi, A.H. Hamdi, and F.D. McDaniel, IEEE Trans. Nucl. Sci. NS-30 (2), 1718 (1983).

  7. 7.

    C. Jaussaud, J. Margail, J. Stoemenos, and M. Bruel, Mat. Res. Soc. Symp. Proc.. 100, 17 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    C. Jaussaud, J. Stoemenos, J. Margail, M. DuPuy, B. Blanchard, and M. Bruel, Appl. Phys. Lett. 46 (11), 1064 (1985).

  9. 9.

    G.K. Celler, P.L.F. Hemment, K.W. West, and J.M. Gibson, Appl. Phys. Lett. 48 (8) 532 (1986).

  10. 10.

    B.Y. Mao, P.H. Chang, H.W. Lam, B.W. Shen, and J.A. Keenan, Appl. Phys. Lett. 48 (12), 794 (1986).

  11. 11.

    F. Namavar, unpublished data in several monthly reports to Rome Air Development Center, 1987, and to be published.

  12. 12.

    Y. Homma, et al., Japan, J. Appl. Phys. 21 (6), 890 (1982).

  13. 13.

    D. Hill, P. Fraundorf, and G. Fraundorf, J. Appl. Phys.. 63, 4932 (1988).

    Article  Google Scholar 

  14. 14.

    T.F. Cheek, Jr., and D. Chen, Mat. Res. Soc. Symp. Proc.. 107, 53 (1988).

    CAS  Article  Google Scholar 

  15. 15.

    P. Sioshansi and F. Namavar, Mat. Res. Soc. Symp. Proc.. 107, 67 (1988).

    CAS  Article  Google Scholar 

Download references

Author information



Additional information

This work was supported in part by the Department of Defense, Rome Air Development Center/ESR, under contract No. F19628-86-C-0069.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Namavar, F., Cortesi, E. & Sioshansi, P. Low-Defect, High-Quality Simox Produced By Multiple Oxygen Implantation with Substoichiometric Total Dose. MRS Online Proceedings Library 128, 623–628 (1988). https://doi.org/10.1557/PROC-128-623

Download citation