Superadditivity in the Implantation of Molecular Ions


This paper deals with the implantation of molecular ions in silicon. The ‘molecular’ effect, i.e. the increase of the displacement yield compared with the sum of the atomic yields, is weak for light molecules (e.g., H2) and for heavy diatomic molecules (e.g., Sb2 and Bi2), but, for instance, it is strong for C6H6 at energy per atomic mass of the order of 1 keV/amu. Binary collision calculations are used to give a pictorial view of the phenomena occurring along the ion path, and to predict superadditivity and damage columnarity. The increase of pressure and temperature to extreme conditions by implantation of molecular ions is discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    G.F. Cerofolini and L. Meda, Phys. Rev. B. 36, 5131 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    G.F. Cerofolini, L. Meda and C. Volpones, J. Appl. Phys.. 63, 4911 (1988).

    CAS  Article  Google Scholar 

  3. 3.

    E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate and D.C. Jacobson, Appl. Phys. Lett. 42, 698 (1983); J. Appl. Phys. 57, 1795 (1985).

  4. 4.

    R.S. Averback, presented at the Workshop on the Effects of Recoil Spectrum and Nuclear Transmutation on the Evolution of the Microstructure, Lugano, March 1988.

  5. 5.

    H. Mueller, H. Ryssel and I. Ruge, in: Proc. 2nd Intl. Conf. Ion Implantation, I. Ruge and J. Graul eds., Springer-Verlag, Berlin, (1971) p. 85.

  6. 6.

    W. Vandervost, D.C. Houghton, F.R. Shepherd, M.L. Swanson, H.L. Plattner and G.J.C. Carpenter, Can. J. Phys.. 63, 863 (1985).

    Article  Google Scholar 

  7. 7.

    S.D. Brotherton, J.P. Gowers, N.D. Young, J.B. Clegg and J.R. Ayres, J. Appl. Phys.. 60, 3567 (1986).

    CAS  Article  Google Scholar 

  8. 8.

    J.B. Mitchell, J.A. Davies, L.M. Howe, R.S. Walker, K.B. Winterbon, G. Foti and J.A. Moore, in: Ion Implantation in Semiconductors, S. Namba ed., Plenum Press, New York, NY (1975) p. 493.

  9. 9.

    D.A. Thompson, A. Golanski, K.H. Haugen, D.V. Stefanovic, G. Carter and C.E. Christoulides, Radiat. Eff. 52, 69 (1980).

  10. 10.

    D.A. Thompson, R.S. Walker and J.A. Davies, Radiat. Eff. 32, 135 (1977).

  11. 11.

    A. Grob, J.J. Grob and A. Golanski, Nucl. Instrum. Meth. B 19/20, 55 (1987).

  12. 12.

    J.A. Davies, G. Foti, L.M. Howe, J.B. Mitchell and K.B. Winterbon, Phys. Rev. Lett.. 34, 1441 (1975).

    CAS  Article  Google Scholar 

  13. 13.

    U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963).

  14. 14.

    M.T. Robinson and I.M. Torrens, Phys. Rev. B. 9, 5008 (1974).

    CAS  Article  Google Scholar 

  15. 15.

    Assuming, as done in ref. [12], that y observed in the implantation of carbon at 8.8 keV is exclusively due to v-i, allows us to determine the values of binding energy Ub and quit energy Eq required by MARLOWE to describe the formation of the v-i pair. These values are Ub ≃ 40 eV and Eq ≃ 40 eV.

  16. 16.

    L.M. Howe, M.H. Rainville, H.K. Haugen and D.A. Thompson, Nucl. Instrum. Meth. 170, 419 (1980).

  17. 17.

    L.M. Howe and M.H. Rainville, Nucl. Instrum. Meth. B 19/20, 61 (1987).

  18. 18.

    J.F. Gibbons, W.S. Johnson and S.W. Mylroie, Projected Range Statistics, Dowden, Hutchinson & Ross, Stroudsburg, PA (1975).

  19. 19.

    No latent heat has been considered for this estimate; it existence and value do not modify the following considerations.

  20. 20.

    R. Jeanloz, Nature 325, 303 (1987).

  21. 21.

    F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, John Wiley & Sons, New York (1980) p. 1020.

  22. 22.

    G.F. Cerofolini and L. Meda, Italian Patent No. 20321A/87 (April 1987).

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cerofolini, G.F., Meda, L. & Volpones, C. Superadditivity in the Implantation of Molecular Ions. MRS Online Proceedings Library 128, 181–186 (1988).

Download citation