Synthesis and Thermoelectric Properties of Y-doped Ca3Co4O9 Ceramics

Abstract

Polycrystalline ceramics with nominal composition of Ca3-xYxCo4O9+δ (0≤x≤0.10) were grown using the citrate-complex method. Thermoelectric properties were studied using Seebeck coefficient S(T) and electrical resistivity ρ(T) measurements. These transport properties were studied in the temperature range between 100 and 290K. For low doping levels in Y substituted samples (x≤0.06) the magnitude of S(T) and ρ(T) decreases with yttrium content. The temperature behavior of S(T) and ρ(T) was interpreted in terms of the small-polaron hopping mechanism. From S(T) and ρ(T) data it was possible to calculate the thermoelectric power factor PF, which reaches maximum values close to 23 μW/K2-cm. These values become these compounds promissory thermoelectric compounds for use in low temperature thermoelectric applications.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    D. M. Rowe CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap. 30.

    Google Scholar 

  2. 2

    G. S. Nolas J. Sharp and H. J. Goldsmid Thermoelectrics, basic principles and new materials developments, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  3. 3

    G. Mahan B. Sales and J. Sharp Physics Today, 50, 42 (1997).

  4. 4

    S. Yamanaka H. Kobayashi and K. Kurosaki J.J. Alloys Comp. 349, 321–324 (2003).

    CAS  Article  Google Scholar 

  5. 5

    S. Li R. Funahashi I. Matsubara H. Yamada K. Ueno and M. Ikebe, Ceramics International, 27, 321–324 (2001).

    CAS  Article  Google Scholar 

  6. 6

    E. Sudhakar J.G. Noudem S. Hebert and C. Goupil J.Phys. D: Appl. Phys. 38, 3751–3755 (2005).

    Article  Google Scholar 

  7. 7

    L.C. Moreno D. Cadavid and J. E. Rodriguez Microelectronics Journal, 39, 548–550 (2008).

    CAS  Article  Google Scholar 

  8. 8

    A.C. Casset C. Michel A. Maignan M. Hervieu O. Toulemonde F. Studer and B. Raveau Phys. Rev. B 62, 166 (2000).

  9. 9

    T. Tani H. Itahara C. Xia and J. Sugiyama J. Matter. Chem. 13, 1865 (2003).

  10. 10

    S.W. Li R. Funahashi I. Matsubara K. Ueno S. Sodeoka and H. Yamada Chem. Matter. 12, 2424 (2000).

  11. 11

    Y. F. Zhang J. X. Zhang Q. M. Lu and Q. Y. Zhang Materials Letters, 60, 2443–2446 (2006).

    CAS  Article  Google Scholar 

  12. 12

    D. M. Rowe D. M. Rowe CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap.3.

    Google Scholar 

  13. 13

    H.Q. Liu Y. Song S.N. Zhang X.B. Zhao and F.P. Wang J. Phys and Chem. Sol. 70, 600–603 (2009).

    CAS  Article  Google Scholar 

  14. 14

    S. Noguch T. Sekimoto and T. Ishida J. Phys.: Condens Matter, 16, S5769 (2004).

  15. 15

    Y. Wang Y. Sui J. Cheng X. Wang W. Su X. Liu and H.F. Fan J. Phys. Chem. C 114 (11), 5174–5181 (2010).

    CAS  Article  Google Scholar 

  16. 16

    J.F. Kwak Phys. Rev. B 13, 652–657 (1976).

    CAS  Article  Google Scholar 

  17. 17

    P.M. Chaikim and G. Beni Phys. Rev. B 13, 647–651 (1976).

    Article  Google Scholar 

  18. 18

    N.F. Mott and E.A. Davis Electronic Processes in non-crystalline materials, Claredon Press, Oxford, 1979.

    Google Scholar 

  19. 19

    N.V. Lien and D.D. Toi Phys. Lett. A 261, 108–113 (1999).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. E. Rodríguez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rodríguez, J.E., Moreno, L.C. Synthesis and Thermoelectric Properties of Y-doped Ca3Co4O9 Ceramics. MRS Online Proceedings Library 1267, 1102 (2010). https://doi.org/10.1557/PROC-1267-DD11-02

Download citation