Skip to main content
Log in

Synthesis and Thermoelectric Properties of Y-doped Ca3Co4O9 Ceramics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Polycrystalline ceramics with nominal composition of Ca3-xYxCo4O9+δ (0≤x≤0.10) were grown using the citrate-complex method. Thermoelectric properties were studied using Seebeck coefficient S(T) and electrical resistivity ρ(T) measurements. These transport properties were studied in the temperature range between 100 and 290K. For low doping levels in Y substituted samples (x≤0.06) the magnitude of S(T) and ρ(T) decreases with yttrium content. The temperature behavior of S(T) and ρ(T) was interpreted in terms of the small-polaron hopping mechanism. From S(T) and ρ(T) data it was possible to calculate the thermoelectric power factor PF, which reaches maximum values close to 23 μW/K2-cm. These values become these compounds promissory thermoelectric compounds for use in low temperature thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Rowe CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap. 30.

    Book  Google Scholar 

  2. G. S. Nolas J. Sharp and H. J. Goldsmid Thermoelectrics, basic principles and new materials developments, Springer-Verlag, Berlin, 2001.

    Book  Google Scholar 

  3. G. Mahan B. Sales and J. Sharp Physics Today, 50, 42 (1997).

  4. S. Yamanaka H. Kobayashi and K. Kurosaki J.J. Alloys Comp. 349, 321–324 (2003).

    Article  CAS  Google Scholar 

  5. S. Li R. Funahashi I. Matsubara H. Yamada K. Ueno and M. Ikebe, Ceramics International, 27, 321–324 (2001).

    Article  CAS  Google Scholar 

  6. E. Sudhakar J.G. Noudem S. Hebert and C. Goupil J.Phys. D: Appl. Phys. 38, 3751–3755 (2005).

    Article  Google Scholar 

  7. L.C. Moreno D. Cadavid and J. E. Rodriguez Microelectronics Journal, 39, 548–550 (2008).

    Article  CAS  Google Scholar 

  8. A.C. Casset C. Michel A. Maignan M. Hervieu O. Toulemonde F. Studer and B. Raveau Phys. Rev. B 62, 166 (2000).

  9. T. Tani H. Itahara C. Xia and J. Sugiyama J. Matter. Chem. 13, 1865 (2003).

  10. S.W. Li R. Funahashi I. Matsubara K. Ueno S. Sodeoka and H. Yamada Chem. Matter. 12, 2424 (2000).

  11. Y. F. Zhang J. X. Zhang Q. M. Lu and Q. Y. Zhang Materials Letters, 60, 2443–2446 (2006).

    Article  CAS  Google Scholar 

  12. D. M. Rowe D. M. Rowe CRC Handbook of thermoelectrics, CRC Press, Boca Raton Fl, 1995, Chap.3.

    Google Scholar 

  13. H.Q. Liu Y. Song S.N. Zhang X.B. Zhao and F.P. Wang J. Phys and Chem. Sol. 70, 600–603 (2009).

    Article  CAS  Google Scholar 

  14. S. Noguch T. Sekimoto and T. Ishida J. Phys.: Condens Matter, 16, S5769 (2004).

  15. Y. Wang Y. Sui J. Cheng X. Wang W. Su X. Liu and H.F. Fan J. Phys. Chem. C 114 (11), 5174–5181 (2010).

    Article  CAS  Google Scholar 

  16. J.F. Kwak Phys. Rev. B 13, 652–657 (1976).

    Article  CAS  Google Scholar 

  17. P.M. Chaikim and G. Beni Phys. Rev. B 13, 647–651 (1976).

    Article  Google Scholar 

  18. N.F. Mott and E.A. Davis Electronic Processes in non-crystalline materials, Claredon Press, Oxford, 1979.

    Google Scholar 

  19. N.V. Lien and D.D. Toi Phys. Lett. A 261, 108–113 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, J.E., Moreno, L.C. Synthesis and Thermoelectric Properties of Y-doped Ca3Co4O9 Ceramics. MRS Online Proceedings Library 1267, 1102 (2010). https://doi.org/10.1557/PROC-1267-DD11-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1267-DD11-02

Navigation