Thermoelectric Performance of Nanostructured ZrNiSn Compounds Synthesized by Mechanical Alloying

Abstract

Samples with a composition ZrNiSn were synthesized by a combination of mechanical alloying (MA) and consolidation by either Spark Plasma Sintering (SPS) or hot pressing (HP). Appropriate stoichiometric ratios of the starting materials were milled under an inert atmosphere in a high energy ball mill for 6 hours, achieving a half-Heusler phase. X-Ray diffraction patterns of as milled powders and consolidated samples were compared and analyzed for phase purity. Thermal conductivity, electrical conductivity and Seebeck coefficient were measured as a function of temperature in the range 300 K to 800 K and compared with measurements reported for high temperature solid state reaction synthesis of this compound. HP samples, compared to SPS samples, demonstrate increased grain growth due to longer heating times. Reduced grain size achieved by MA and SPS causes increased phonon scattering due to the increased number of grain boundaries, which lowers the thermal conductivity without doping the base system with addition phonon scattering centers.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S. Bhattacharya M. J. Skove M. Russell T. M. Tritt Y. Xia V. Ponnambalam S. J. Poon, and N. Thadhani . Phys. Rev. B 77, 184203, (2008).

    Article  Google Scholar 

  2. 2

    S. R. Culp Poon, S. J. Hickman N. Tritt T. M. Blumm J. Appl. Phys. Lett. 88, 042106 (2006)

    Article  Google Scholar 

  3. 3

    C. Uher J. Yang S. Hu D. T. Morelli and G. P. Meisner . Phys. Rev. B 59 (13), 8615–8621, (1999).

    CAS  Article  Google Scholar 

  4. 4

    S. Bhattacharya Y. Xia V. Ponnambalam S. J. Poon N. Thadani and T. M. Tritt . in Thermoelectric Materials 2001-Research and Applications, edited by G. S. Nolas D. C. Johnson and D. G. Mandrus (Mater. Res. Soc. Symp. Proc. 691 Pittsburgh, PA, 2002) pp 155–160

    Google Scholar 

  5. 5

    M. Mikami A. Matsumoto and K. Kobayashi . J. Alloys Compd, 461:423–426, (2008).

    CAS  Article  Google Scholar 

  6. 6

    C. Yu T. Zhu R. Shi Y. Zhang X. Zhao and J. He . Acta Mater. 57, 2757–2764, (2009).

    CAS  Article  Google Scholar 

  7. 7

    Q. Shen L. Chen T. Goto T. Hirai J. Yang G. P. Meisner and C. Uher . Appl. Phys Lett. 79 (25), 4165–4167, (2001).

    CAS  Article  Google Scholar 

  8. 8

    G. K. Williamson and W. H. Hall . Acta. Metall. 1, 22–31, (1953).

    CAS  Article  Google Scholar 

  9. 9

    W. Jeitschko . Metall Trans, 1, 3159, (1970).

    CAS  Google Scholar 

  10. 10

    B. A. Cook G. P. Meisner J. Yang and C. Uher . in Proceedings of the 18th International Conference on Thermoelectrics. (IEEE, Piscataway, NJ, 1999), p. 64

    Google Scholar 

  11. 11

    Q. Shen L. Zhang L. Chen T. Goto and T. Hirai . J. Mater. Sci. Lett. 20, 2197–2199, (2001).

    CAS  Article  Google Scholar 

  12. 12

    H. Hohl A. P. Ramirez C. Goldmann G. Ernst B. Wolfing and E. Bucher . J., Phys: Condens Matter, 11, 1697, (1999).

    CAS  Google Scholar 

  13. 13

    N. Ohtori T. Oono and K. Takase . J. Chem. Phys., 130, 044505, (2009).

    Article  Google Scholar 

  14. 14

    S. D. Gilev Combust. Explo. Shock+, 41, 599, (2005)

    Article  Google Scholar 

  15. 15

    J. W. Sharp S. J. Poon and H. J. Goldsmid . Phys. Status Solidi A, 187, 507–516, (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Germond.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Germond, J.D., Schilling, P.J., Takas, N.J. et al. Thermoelectric Performance of Nanostructured ZrNiSn Compounds Synthesized by Mechanical Alloying. MRS Online Proceedings Library 1267, 312 (2010). https://doi.org/10.1557/PROC-1267-DD03-12

Download citation