Terahertz Emission from Vertically-aligned Silicon Nanowires


Large-area vertically aligned silicon nanowire (Si NW) arrays were synthesized with a c ontrolled length (0.3 ~ 9 µm) by the chemical etching of n-type silicon substrates. Upon their excitation using a fs Ti-sapphire laser pulse (800 nm), their THz emission intensity exhibits strong dependence on their length; the intensity increases sharply up to a length of 3 µm and then decreases slightly, due to the complete absorption of the optical pum p power. The Raman scattering spectrum exhibits the same behavior as that of the THz emission. We suggest that the field enhancement by localized surface plasmons induces more efficient THz emission or Raman scattering for the longer Si NWs. The photocurre nt measured in a photoelectrochemical cell showed consistently the length dependence wit h a maximum value at the length of 5 µm.

This is a preview of subscription content, access via your institution.

References And Notes

  1. (1)

    (a) Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435. (b) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Adv. Mater. 2003, 15, 353.

    CAS  Article  Google Scholar 

  2. (2)

    Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K. -H.; Lieber, C. M. Science 2001, 294, 1313.

    CAS  Article  Google Scholar 

  3. (3)

    Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617.

    CAS  Article  Google Scholar 

  4. (4)

    Pucci, A.; Neubrech, F.; Aizpurua, J.; Cornelius, T.; de la Chapelle, M. L. in Lecture notes in nanoscale science and technology, Vol. 3 (Eds: Z. M. Wang), Springer-Verlag, New York, 2008, Ch. 8.

  5. (5)

    Seletskity, D.; Hasselbeck, M. P.; Sheik-Bahae, M.; Cederberg, J. G.; Chuang, L. C.; Moewe, M.; Chang-Hasnain, C. CLEO/QELS 2008 CMM2.

  6. (6)

    He, S.; Chen, X.; Wu, X.; Wang, G.; Zhao, F. J. Lightwave Technology 2008, 26, 1519.

    CAS  Article  Google Scholar 

  7. (7)

    Reid, M.; Cravetchi, I. V.; Fedosejevs, R.; Tiginyanu, I. M.; Sirbu, L. Appl. Phys. Lett. 2005, 86, 021904.

    Article  Google Scholar 

  8. (8)

    (a) Peng, K. -Q.; Yan, Y. -J.; Gao, S. -P.; Zhu, J. Adv. Mater. 2002, 14, 1164. (b) Peng, K.; Yan, Y.; Gao, S.; Zhu, J. Adv. Funct. Mater. 2003, 13, 127. (c) Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu, Y.; Zhu, J. Angew. Chem. Int. Ed. 2005, 44, 2737. (d) Peng, K.; Xu, Y.; Wu, Y.; Yan, Y.; Lee, S. -T.; Zhu, J. Small 2005, 1, 1062. (e) Peng, K.; Hu, J.; Yan, Y.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.; Zhu, J. Adv. Funct. Mater. 2006, 16, 387. (f) Hunag, Z.; Fang, H.; Zhu, J. Adv. Mater. 2007, 19, 744.

  9. (9)

    (a) Peng, K.; Zhang, M.; Lu, A.; Wong, N. -B.; Zhang, R.; Lee, S. -T. Appl. Phys. Lett. 2007, 90, 163123. (b) Zhang, M. -L.; Peng, K. -Q.; Fan, X.; Jie, J. -S.; Zhang, R. -Q.; Lee, S. -T.; Wong, N. -B. J. Phys. Chem. C 2008, 112, 4444. (c) Peng, K.; Lu, A.; Zhang, R.; Lee, S. -T. Adv. Funct. Mater. 2008, 18, 3026. (d) Peng, K. -Q.; Wang, X.; Wu, X. -L.; Lee, S. -T. Nano Lett. 2009, 9, 3704.

  10. (10)

    (a) Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gosele, U. Adv. Mater. 2007, 19, 917. (b) Huang, Z.; Zhang, X.; Reiche, M.; Liu, L.; Lee, W.; Shimizu, T.; Senz, S.; Gosele, U. Nano Lett. 2008, 8, 3046. (c) Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X.; Lee, W.; Geyer, N.; Gosele, U. Nano Lett. 2009, 9, 2519.

  11. (11)

    (a) Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. Nature 2008, 451, 163. (b) Hwang, Y. J.; Boukai, A.; Yang, P. Nano Lett. 2009, 9, 410. (c) Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. Nano Lett. 2009, 9, 3550.

  12. (12)

    Goodey, A. P.; Eichfeld, S. M.; Lew, K. -K.; Redwing, J. M.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 12344.

    CAS  Article  Google Scholar 

  13. (13)

    Maiolo III, J. R.; Atwater, H. A.; Lewis, N. S. J. Phys. Chem. C 2008, 112, 6194.

    CAS  Article  Google Scholar 

  14. (14)

    SivaKov, V.; Andra, G.; Gawlik, A.; Berger, A.; Plentz, J.; Falk, F.; Christiansen, S. H. Nano Lett. 2009, 9, 1549.

    CAS  Google Scholar 

  15. (15)

    Dalchiele, E. A.; Martin, F.; Leinen, D.; Marotti, R. E.; Ramos-Barrado, J. R. J. Electrochem. Soc. 2009, 156, K77.

  16. (16)

    Kalita, G.; Adhikari, S.; Aryal, R. H.; Afre, R.; Soga, T.; Sharon, M.; Koichi, W.; Umeno, M. J. Phys. D: Appl. Phys. 2009, 42, 115104.

    Google Scholar 

  17. (17)

    Shu, Q.; Wei, J.; Wang, K.; Zhu, H.; Li, Z.; Jia, Y.; Gui, X.; Guo, N.; Li, X.; Ma, C.; Wu, D. Nano Lett. 2009, 9, 4338.

    CAS  Article  Google Scholar 

  18. (18)

    Brammer, K. S.; Choi, C.; Oh, S.; Cobb, C. J.; Connelly, L. S.; Loya, M.; Kong, S. D.; Jin, S. Nano Lett. 2009, 9, 3570.

    CAS  Article  Google Scholar 

  19. (19)

    Qu, Y.; Liao, L.; Li, Y.; Zhang, H.; Huang, Y.; Duan, X. Nano Lett. 2009, 9, 4539.

    CAS  Article  Google Scholar 

  20. (20)

    Koynov, S.; Brandt, M. S.; Stutzmann, M. Appl. Phys. Lett. 2006, 88, 203107.

    Article  Google Scholar 

  21. (21)

    Yoo, J. S.; Parm, I. O.; Gangpopadhyay, U.; Kim, K.; Dhungel, S. K.; Mangalaraj, D.; Yi, J. Solar Energy Materials & Solar Cells 2006, 90, 3085.

    CAS  Article  Google Scholar 

  22. (22)

    Hoyer, P.; Theuer, M.; Beigang, R.; Kley, E. -B. Appl. Phys. Lett. 2008, 93, 091106.

    Article  Google Scholar 

  23. (23)

    Roumanie, M.; Delattre, C.; Mittler, F.; Marchand, G.; Meille, V.; de Bellefon, C.; Pijolat, C.; Tournier, G.; Pouteau, P. Chem. Eng. J. 2008, 135, S317.

  24. (24)

    Branz, H. M.; Yost, V. E.; Ward, S.; Jones, K. M.; To, B.; Stradins, P. Appl. Phys. Lett. 2009, 94, 231121.

    Article  Google Scholar 

  25. (25)

    Talian, I.; Mogensen, K. B.; Orinak, A.; Kaniansky, D.; Hubner, J. J. Raman Spectrosc. 2009, 40, 982.

    CAS  Article  Google Scholar 

  26. (26)

    Schaadt, D. M.; Feng, B.; Yu, E. T. Appl. Phys. Lett. 2005, 86, 063106.

    Article  Google Scholar 

  27. (27)

    Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Appl. Phys. Lett. 2006, 89, 093103.

    Article  Google Scholar 

  28. (28)

    Akimov, Y. A.; Ostrikov, K.; Li, E. P. Plasmonics, 2009, 4, 107.

    CAS  Article  Google Scholar 

  29. (29)

    Westphalen, M.; Kreibig, U.; Rostalski, J.; Luth, H.; Meissner, D. Solar Energy Materials & Solar Cells, 2000, 61, 97.

    CAS  Article  Google Scholar 

  30. (30)

    Zhang, X. C.; Auston, D. H. J. Appl. Phys. 1992, 71, 326.

    CAS  Article  Google Scholar 

  31. (31)

    Dember, H. Phys. Z. 1931, 32, 554.

    CAS  Google Scholar 

  32. (32)

    Kono, S.; Gu, P.; Tani, M.; Sakai, K. Appl. Phys. B: Lasers Opt. 2000, 71, 901.

    CAS  Article  Google Scholar 

  33. (33)

    Kersting, R.; Heyman, J. N.; Strasser, G.; Unterrainer, K. Phys. Rev. B. 1998, 58, 4553.

    CAS  Article  Google Scholar 

  34. (34)

    Xiong, Q.; Chen, G.; Gutierrez, H. R.; Eklund, P. C. Appl. Phys. A. 2006, 85, 299.

    CAS  Article  Google Scholar 

  35. (35)

    Hasselbeck, M. P.; Seletskiy, D.; Dawson, L. R.; Sheik-Bahae, M. Phys. Stat. Sol. (c). 2008, 5, 253.

  36. (36)

    Bosbach, J.; Hendrich, C.; Stiez, F.; Vartanyan, T.; Träger, F. Phys. Rev. Lett. 2002, 89, 257404.

    CAS  Article  Google Scholar 

  37. (37)

    Gu, P.; Tani, M. in Terahertz Optoelectroninc, Topics Appl. Phys. 97 (Eds: K. Sakai) Springer-Verlag, Berlin Heidelberg, 2005, Ch. 3.

  38. (38)

    Yang, Y.; Xiong, L.; Shi, J.; Nogami, M. Nanotechnology 2006, 17, 2670.

    CAS  Article  Google Scholar 

  39. (39)

    Billot, L.; de la Chapelle, M.; Grimault, A. -S.; Vial, A.; Barchiesi, D.; Bijeon, J. -L.; Adam, P. -M.; Royer, P. Chem. Phys. Lett. 2006, 422, 303.

    CAS  Article  Google Scholar 

  40. (40)

    Yuan, G.; Zhao, H.; Liu, X.; Hasanali, Z. S.; Zou, Y.; Levine, A.; Wang, D. Angew. Chem. Int. Ed. 2009, 48, 9680.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yong Jae Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, Y.J., Jung, G.B., Myung, Y. et al. Terahertz Emission from Vertically-aligned Silicon Nanowires. MRS Online Proceedings Library 1258, 1306 (2010). https://doi.org/10.1557/PROC-1258-P13-06

Download citation