Skip to main content
Log in

Active Nanostructures at Interfaces for Photocatalytic Reactors and Low-power Consumption Sensors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Active nanostructures which provide unique transformations are being introduced to phase matched porous silicon (PS) nano/micropores to form a platform for low power consumption highly selective sensors and microreactors. TiO2-xNx photocatalysts have been formed in seconds at room temperature at the nanoscale via the direct nitration of anatase TiO2 nanocolloids. Tunability throughout the visible depends upon the degree of agglomeration and the ability to seed these nanoparticles with metal ions. Co metal ion seeding leads to the efficient room temperature phase transformation, of anatase to rutile TiO2, where normally much higher temperatures are required. Seeding of a properly nitridated TiO2 nanocolloid with transition metal ions (Co, Ni) allows for the enhancement of the infrared spectra of the TiO2-xNx nitridated titania surface in excess of 10-fold, providing a means to analyze for minor contaminants and intermediates. Evidence for nitrogen fixation is found in Fe treated systems. The TiO2-xNx systems act as visible light absorbing photocatalyts. These photocatalysts and additional nanostructured metal oxides can be placed on the surface of PS-based sensor and microreactor configurations to greatly improve the interface response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ozdemir and J.L. Gole, Current Opinion in Solid State and Materials Science, 11, 92–100 (2007).

    Article  CAS  Google Scholar 

  2. S.E. Lewis, J.R. DeBoer, J.L. Gole, P.J. Hesketh, Sens. Actuators B, 110,54–65 (2005).

  3. J.L. Gole, S.E. Lewis, SPIE-Proceedings, 2005, 5732 : 573–583.

  4. J. Campbell, J.A. Corno, N. Larsen, J.L. Gole, J.Electrochem. Soc. 155, D128–132 (2008).

  5. S. Kumar, A.G. Fedorov, and J.L. Gole, Applied Catalysis B:Env 57(2),93 (2005).

  6. J.L. Gole, J. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108,1230 (2004).

  7. X. Chen, Y. Lou, A.C.S. Samia, C. Burda, and J.L. Gole, Adv. Func. Mater 15, 41 (2005).

  8. S.M. Prokes, J.L. Gole, X.Chen, C. Burda and W.E. Carlos, Adv Func. Mater 15, 161, 2005.

  9. C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole, Nano Lett, 3, 1049 (2003).

  10. J.L. Gole, S.M. Prokes, and M.G. White, Appl. Surface Sci. 255, 718 (2008).

  11. J.L. Gole, S.M. Prokes, and O.J. Glembocki, J. Phys. Chem. C, 112, 1782 (2008). Most recently, J. Choi, H. Park,and M.R. Hoffmann, J. Phys. Chem. C, 114,783–792 (2010) have observed similar transition metal based transformations albeit at considerably elevated temperatures.

  12. E. Gyorgy, A. Peres del Pino, P. Serra, J.L. Moreza, Appl. Surf. Science, 186, 130, 2002.

  13. “Study of Concentration-dependent Cobalt Ion Doping of TiO2 and TiO2−xNx at the Nanoscale”, J.L. Gole, S.M. Prokes, X. Qiu, C. Burda, J. Wang, and O.J. Glemboki, Nanoscale, DOI: 10.1039/c0nr00125b.

  14. C.F. Windisch, Jr., G.J. Exarhos, R.R. Owings, J. Appl. Phys. 95, 5435 (2004).

  15. A. Brevet, F. Fabreguette, L. Imhoff, McM de Lucas, O. Heintz, L. Saviot, M. Sacilotti, S. Bourgeois, Surfaces and Coatings Technol. 36, 151 (2002).

  16. M.J. Escudero, T. Rodrigo, L. Mendoza, M. Cassir, L. Daza, J. Power Sources, 140, 81 (2004).

  17. J.L. Gole, D.A. Dixon, Clemens Burda, and Jonathan Brauer to be published.

  18. J.L. Gole, S.M. Prokes, M.G. White, T.-H. Wang, R, Craciun, and D.A. Dixon, J. Phys. Chem. C, 111, 16871–7 (2007).

  19. S.Ozdemir, J.L. Gole “A phosphine detection matrix using nanostructure modified porous silicon gas sensors”, submitted to Sens. and Actuators B.

  20. J.L. Gole and S. Ozdemir, “Nanostructure directed physisorption and chemisorption at semiconductor interfaces: The inverse of the hard-soft acid-base (HSAB) concept”, Chemphyschem, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gole, J.L., Ozdemir, S., Prokes, S.M. et al. Active Nanostructures at Interfaces for Photocatalytic Reactors and Low-power Consumption Sensors. MRS Online Proceedings Library 1257, 904 (2010). https://doi.org/10.1557/PROC-1257-O09-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1257-O09-04

Navigation