GeTe-filled Carbon Nanotubes for Data Storage Applications


By virtue of their unique electronic properties, nanometer-diameter sized single-walled carbon nanotubes represent ideal candidates to function as active parts of nanoelectronic memory storage devices. We show for the first time that GeTe, a phase change material, currently considered to be one of the most promising materials for data-storage applications, can efficiently be encapsulated within single-walled carbon nanontubes of 1.4 nm diameter. Structural investigations on the encapsulated GeTe nanowires have been carried out by high resolution transmission electron microscopy. The electronic interactions between the filling material and the host nanotube have been examined using ultraviolet photoelectron spectroscopy experiments and show that the electronic structure of the encapsulating nanotube and that of the encased filling are not perturbed by the presence of each of the other component. The newly formed hybrids offer potential to operate as active elements in non-volatile electronic memory storage devices.

This is a preview of subscription content, access via your institution.


  1. 1

    E. Bichoutskaia, A. M. Popov, Y. E. Lozovik, Materials Today, 11, 6, 38, (2008).

    CAS  Article  Google Scholar 

  2. 2

    T. Rueckes, et al. Science 289, 94, (2000).

    CAS  Article  Google Scholar 

  3. 3

    R. Carter, J. Sloan, A.I. Kirkland, et al, Phys. Rev. Lett. 96, 215501, (2006).

    Article  Google Scholar 

  4. 4

    R.R. Meyer et al., Science 289, 1324, (2000).

    CAS  Article  Google Scholar 

  5. 5

    E. Philp, J. Sloan, A.I. Kirkland, R.R. Meyer, S. Friedrichs, J.L. Hutchison, M.L.H. Green, Nature Mater., 2, 788 (2003).

    CAS  Article  Google Scholar 

  6. 6

    J. Sloan, R. Carter, et al., Microscopy of Semic. Mat. 120, 213, (2008).

    CAS  Google Scholar 

  7. 7

    M. Chen, K. A. Rubin, R. W. Barton, Appl. Phys. Lett. 49, 9, 502, (1986).

    CAS  Article  Google Scholar 

  8. 8

    M. H. Lankhorst, B. W. Ketelaars, and R. A. Wolters, Nature Mater. 4, 266, (2005).

    Article  Google Scholar 

  9. 9

    H. B. Chung, K. Shin, J. M. Lee, J. Vac. Sci. Technol. A 25, 1, 48, (2007).

    Article  Google Scholar 

  10. 10

    M. Wuttig, N. Yamada, Nature Mater. 6, 824, (2007).

    CAS  Article  Google Scholar 

  11. 11

    S. Raoux et al., IBM J. Res. & Dev. 52, 4/5, July/September, (2008).

    Article  Google Scholar 

  12. 12

    S. Raoux, Annu. Rev. Mater. Res. 39, 25, (2009).

    CAS  Article  Google Scholar 

  13. 13

    S.-H. Lee, Y. Jung, R. Agarwal, Nature Nanotech. 2, 626, (2007).

    CAS  Article  Google Scholar 

  14. 14

    S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock,T. Topuria, P. M. Rice, and D. C. Miller, J. Appl. Phys. 102, 9, 94305 (2007).

    Article  Google Scholar 

  15. 15

    J. Sloan, A. Kirkland, J. L. Hutchison, and M. L. H. Green, Chem. Commun. 1319 (2002).

    Google Scholar 

  16. 16

    S. Hosokawa, Y. Hari, T. Kouchi, I. Ono, H. Sato, M. Taniguchi, A. Hiraya, Y. Takata, N. Kosugi, M. Watanabe, J. Phys.: Condens. Matter 10, 1931, (1998).

    CAS  Google Scholar 

  17. 17

    H. Rauf, H. Shiozawa, T. Pichler, M. Knupfer, B, Buchner, H. Kataura, Phys. Rev. B 72, 245411 (2005).

    Article  Google Scholar 

  18. 18

    S. Suzuki, C. Bower, Y. Watanabe, O. Zhou, Appl. Phys.Lett. 76 4007, (2000).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giusca, C.E., Stolojan, V., Sloan, J. et al. GeTe-filled Carbon Nanotubes for Data Storage Applications. MRS Online Proceedings Library 1251, 603 (2010).

Download citation