Skip to main content
Log in

Understanding Phase Change Memory Reliability and Scaling by Physical Models of the Amorphous Chalcogenide Phase

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Phase change memory (PCM) devices are based on the electrically-induced change of phase within an active chalcogenide material. PCM features large resistance window, fast threshold/phase switching and high endurance, thus motivating a broad interest as potential Flash replacement and/or nonvolatile storage class memory. Despite the relatively mature progress of research and technology, there is still a wide debate about the ultimate scaling perspective for PCMs. Structural relaxation, crystallization and noise affecting the amorphous chalcogenide phase need to be addressed by accurate physical models for a realistic scaling projection. This work discusses the scaling of PCM devices in terms of the conduction mechanisms and structural stability of the amorphous chalcogenide phase. Resistance window narrowing, current fluctuations, resistance drift and crystallization in the amorphous phase will be explained by a unified model for thermal excitation of the structure by many-phonon phenomena. The downscaling of the reset current, needed to reduce the cell area in memory arrays, and thermal disturb between adjacent cells during reset will be finally addressed to assess the scaling capability of high-density PCM crossbar architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  2. R. F. Freitas and W. W. Wilcke, IBM J. Research Development 32, 439 (2008).

    Article  Google Scholar 

  3. G. Servalli, IEDM Tech. Dig. 113 (2009)

    Google Scholar 

  4. Y. Sasago, M. Kinoshita, T. Morikawa, K. Kurotsuchi, S. Hanzawa, T. Mine, A. Shima, Y. Fujisaki, H. Kume, H. Moriya, N. Takaura and K. Torii, Symp. VLSI Tech. Dig. 24 (2009).

    Google Scholar 

  5. D. Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. Diaz, N. Leung, J. Wu, S. Lee, T. Langtry, K.-W. Chang, C. Papagianni, J. Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro and G. Spadini, IEDM Tech. Dig. 617 (2009)

    Google Scholar 

  6. F. Pellizzer and R. Bez, E/PCOS (2007).

  7. U. Russo, D. Ielmini and A. L. Lacaita, IEEE Trans. Electron Devices 54, 2769 (2007).

    Article  CAS  Google Scholar 

  8. D. Ielmini, “Phase change memory device modeling,” in Phase Change Materials – Science and Applications, Springer, S. Raoux and M. Wuttig Eds., 299 (2009).

  9. U. Russo, D. Ielmini, A. Redaelli and A. L. Lacaita, IEEE Trans. Electron Devices 55, 506 (2008).

    Article  Google Scholar 

  10. D. Fugazza, D. Ielmini, S. Lavizzari and A. L. Lacaita, IEDM Tech. Dig. 723–726 (2009).

    Google Scholar 

  11. D. Ielmini, Phys. Rev. B 78, 035308 (2008).

    Article  Google Scholar 

  12. D. Ielmini and Y. Zhang, J. Appl. Phys. 102, 054517 (2007).

    Article  Google Scholar 

  13. D. Fugazza, D. Ielmini, S. Lavizzari and A. L. Lacaita, IEEE IRPS (2010).

  14. G. Betti Beneventi, A. Calderoni, P. Fantini, L. Larcher, and P. Pavan, J. Appl. Phys. 106, 054506 (2009).

    Article  Google Scholar 

  15. D. Ielmini, D. Sharma, S. Lavizzari and A. L. Lacaita, IEEE Trans. Electron Devices 56, 1070 (2009).

    Article  CAS  Google Scholar 

  16. D. Ielmini, S. Lavizzari, D. Sharma and A. L. Lacaita, Appl. Phys. Lett. 92, 193511 (2008).

    Article  Google Scholar 

  17. D. Ielmini and M. Boniardi, Appl. Phys. Lett. 94, 091906 (2009).

    Article  Google Scholar 

  18. W. Meyer and H. Neldel, Z. Tech. Phys. (Leipzig) 12, 588 (1937).

    Google Scholar 

  19. A. Yelon, B. Movaghar, and H. M. Branz, Phys. Rev. B 46, 12244 (1992).

    Article  Google Scholar 

  20. S. Savranski and I.V. Karpov, Mater. Res. Soc. Symp. Proc. 1072 (2008).

    Google Scholar 

  21. A. Calderoni, M. Ferro, D. Ventrice, D. Ielmini and P. Fantini, IEEE IRPS, (2010).

  22. R. S. Crandall, Phys. Rev. B 43, 4057 (1991).

    Article  Google Scholar 

  23. S. Lai and T. Lowrey, IEDM Tech. Dig. 803 (2001).

    Google Scholar 

  24. F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson, M. Magistretti, T. Marangon, A. Pirovano, R. Bez, G. Atwood, Symp. VLSI Tech. Dig. 122 (2006).

    Google Scholar 

  25. F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo, T. Marangon, R. Morandi, R. Piva, A. Spandre, R. Zonca, A. Modelli, E. Varesi, T. Lowrey, A. Lacaita, G. Casagrande, P. Cappelletti, and R. Bez, Symp. VLSI. Tech. Dig., 18 (2004).

    Google Scholar 

  26. N. Takaura, M. Terao, K. Kurotsuchi, T. Yamauchi, O. Tonomura, Y. Hanaoka, R. Takemura, K. Osada, T. Kawahara and H. Matsuoka, IEDM Tech. Dig. 897 (2003).

    Google Scholar 

  27. N. Matsuzaki, K. Kurotsuchi, Y. Matsui, O. Tonomura, N. Yamamoto, Y. Fujisaki, N. Kitai, R. Takemura, K. Osada, S. Hanzawa, H. Moriya, T. Iwasaki, T. Kawahara, N. Takaura, M. Terao, M. Matsuoka and M. Moniwa, IEDM Tech. Dig. 758 (2006).

    Google Scholar 

  28. Y. Matsui, K. Kurotsuchi, O. Tonomura, T. Morikawa, M. Kinoshita, Y. Fujisaki, N. Matsuzaki, S. Hanzawa, M. Terao, N. Takaura, H. Moriya, T. Iwasaki, M. Moniwa, T. Koga, IEDM Tech. Dig. 769 (2007).

    Google Scholar 

  29. C.W. Jeong, D.H. Kang, D.W. Ha, Y.J. Song, J.H. Oh, J.H. Kong, J.H. Yoo, J.H. Park, K.C. Ryoo, D.W. Lim, S.S. Park, J.I. Kim, Y.T. Oh, J.S. Kim, J.M. Shin, Jaehyun Park, Y. Fai, G.H. Koh, G.T. Jeong, H. S. Jeong, Kinam Kim, Solid-State Electronics 52, 591 (2008).

    Article  CAS  Google Scholar 

  30. S. L. Cho, J. H. Yi, Y. H. Ha, B. J. Kuh, C. M. Lee, J. H. Park, S.D. Nam, H. Horii, B. O. Cho, K. C. Ryoo, S. O. Park, H. S. Kim, U.-I. Chung, J. T. Moon, and B. I. Ryu, Symp. VLSI Tech Dig., 96 (2005).

    Google Scholar 

  31. M. Breitwisch, T. Nirschl, C. F. Chen, Y. Zhu, M. H. Lee, M. Lamorey, G. W. Burr, E. Joseph, A. Schrott, J. B. Philipp, R. Cheek, T. D. Happ, S. H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnagel, M. Yang, Y. C. Chen, R. Bergmann, H. L. Lung, and C. Lam, Symp. VLSI Tech. Dig., 100 (2007).

    Google Scholar 

  32. T. D. Happ, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. H. Ho, S. H. Chen, C. F. Chen, E. Joseph, S. Zaidi, G. W. Burr, B. Yee, Y. C. Chen, S. Raoux, H. L. Lung, R. Bergmann and C. Lam, Symp. VLSI Tech. Dig. 120 (2006).

    Google Scholar 

  33. D.-S. Chao, Y.-C. Chen, F. Chen, M.-J. Chen, P. H. Yen, C.-M. Lee, W.-S. Chen, C. L., M.-J. Kao and M.-J. Tsai, IEEE Electron Device Lett. 28, 871 (2007).

    Article  CAS  Google Scholar 

  34. W. Czubatyj, T. Lowrey, S. Kostylev and I. Asano, E/PCOS 2006.

  35. J. I. Lee, H. Park, S.L. Cho, Y.L. Park, B.J. Bae, J.H. Park, J.S. Park, H.G. An, J.S. Bae, D.H. Ahn, Y.T. Kim, H. Horii, S. A. Song, J.C. Shin, S.O. Park, H.S. Kim, U-In. Chung, J.T. Moon, and B.I. Ryu., Symp. VLSI Tech. Dig. 102 (2007).

    Google Scholar 

  36. D. H. Im, J. I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U-In Chung, and J.T. Moon, IEDM Tech. Dig. 211 (2008).

    Google Scholar 

  37. W. S. Chen, C. M. Lee, D. S. Chao, Y. C. Chen, F. Chen, C. W. Chen, P. H. Yen, M. J. Chen, W. H. Wang, T. C. Hsiao, J. T. Yeh, S. H. Chiou, M. Y. Liu, T. C. Wang, L. L. Chein, C. M. Huang, N. T. Shih, L. S. Tu, D. Huang, T. H. Yu, M. J. Kao and M.-J. Tsai, IEDM Tech. Dig. 319 (2007).

    Google Scholar 

  38. Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann and C. Lam, IEDM Tech. Dig. 777 (2006).

    Google Scholar 

  39. S.-H. Lee, D.-K. Ko, Y. Jung and R. Agarwal, Appl. Phys. Lett. 89, 223116 (2006).

    Article  Google Scholar 

  40. C. Kim, D. Kang, T.-Y. Lee, K. H. P. Kim, Y.-S. Kang, J. Lee, S.-W. Nam, K.-B. Kim and Y. Khang, Appl. Phys. Lett. 94, 193504 (2009).

    Article  Google Scholar 

  41. S. H. Lee, Y. Jung and R. Agarwal, Nature Nanotech. 2, 626 (2007).

    Article  CAS  Google Scholar 

  42. ITRS 2009, available online at http://www.itrs.net

  43. A. Redaelli, A. Pirovano, I. Tortorelli, F. Ottogalli, A. Ghetti, L. Laurin and A. Beneventi, IRPS (2010).

  44. U. Russo, D. Ielmini, A. Redaelli and A. L. Lacaita, IEEE Trans. Electron Devices 55, 515 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Ielmini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ielmini, D. Understanding Phase Change Memory Reliability and Scaling by Physical Models of the Amorphous Chalcogenide Phase. MRS Online Proceedings Library 1251, 501 (2010). https://doi.org/10.1557/PROC-1251-H05-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1251-H05-01

Navigation