Crystalline Path Formation in Nanoglasses of PCM


This work presents an analytical model of crystalline phase formation in nanoglasses of phase change memory. We describe a data loss mechanism when the cell resistance changes significantly at elevated temperatures over long periods of time with no electrical bias applied. Unlike the standard approach, which relates crystalline shunt formation to aggregates of crystalline particles forming the percolation cluster, we look at the rare events of almost rectilinear path formation in very thin structures. They can occur at crystalline volume fractions considerably lower than the critical volume fraction required for percolation. We find the characteristic parameters which can describe statistics of these rare events.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1

    R. Bez, IEDM Tech. Dig. (IEEE, Baltimore, 2009), p.89

    Google Scholar 

  2. 2

    D. Kau, S. Tang, I. Karpov, et al, IEDM Tech. Dig. (IEEE, Baltimore, 2009), p.617

    Google Scholar 

  3. 3

    U. Russo, D. Ielmini, and A. L. Lacaita, Proc. 45th IRPS, (IEEE, Phoenix, 2007), p.547.

    Google Scholar 

  4. 4

    U. Russo, D. Ielmini, A. Redaelli, and A. L. Lacaita, IEEE Transactions on Electron Devices 53, 3032 (2006).

    CAS  Article  Google Scholar 

  5. 5

    B. Gleixner,, A. Pirovano, J. Sarkar1, F. Ottogalli, E. Tortorelli, M. Tosi, and R. Bez, Proc. 45th IRPS (IEEE, Phoenix, 2007), p. 542.

    Google Scholar 

  6. 6

    A. L. Efros and B. I. Shklovskii, Electronic Properties of Doped Semiconductors (Verlag, Berlin 1979).

    Google Scholar 

  7. 7

    D. Mantegazza, D. Ielmini, A. Pirovano, A. L. Lacaita, IEEE Electron Device Lett. 28, 865 (2007).

    CAS  Article  Google Scholar 

  8. 8

    M. Pollak and J. J. Hauser, Phys. Rev. Lett. 31, 21 (1973).

    Article  Google Scholar 

  9. 9

    M. E. Raikh and I. M. Ruzin, in Mesoscopic Phenomena in Solids, edited by B. L. Altshuller, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991), p. 315.

    Google Scholar 

  10. 10

    S. Lombardo, J. H. Stathis, B. P. Linder, K. L. Pey, F. Palumbo, and C. H. Tung, J. Appl. Phys. 98, 121301 (2005).

    Article  Google Scholar 

  11. 11

    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed. (Dover Publications, Mineola, 2000).

    Google Scholar 

  12. 12

    M. Slutsky, Am. J. Phys. 73, 308 (2005).

    Article  Google Scholar 

  13. 13

    V. G. Karpov, Y. A. Kryukov, I. V. Karpov, and M. Mitra, J. Appl. Phys. 104, 054507 (2008). I. V. Karpov, M. Mitra, G. Spadini, U. Kau, Y. A. Kryukov, and V. G. Karpov, J. Appl. Phys. 102, 124503 (2007).

    Article  Google Scholar 

  14. 14

    J. A. Kalb, C. Y. Wen, and Frans Spaepen, J. Appl. Phys. 98, 054902 (2005).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nardone, M., Simon, M., Karpov, I.V. et al. Crystalline Path Formation in Nanoglasses of PCM. MRS Online Proceedings Library 1251, 306 (2010).

Download citation