Ce Doped-GeSbTe Thin Films Applied to Phase-change Random Access Memory Devices


A study on microstructure and electrical property of cerium (Ce)-doped Ge2Sb2Te5 (GST) layers for phase-change memory (PCM) application were presented. Ce doping does not suppress the resistivity of amorphous GST and the resistivity ratio of amorphous and crystalline GST remains at about 105. Further, Ce-doping escalates the recrystallization temperature (Tx) of GST from 159 to 236°C. Such a unique behavior would greatly benefit the preservation of signal contrast as well as the high-density signal storage and will not cause the increase of device writing current. X-ray diffraction (XRD) indicated that Ce doping stabilizes amorphous GST and suppresses the formation of hexagonal phase. Transmission electron microscopy (TEM) revealed Ce doping refines the grain size of GST. Kissinger’s analysis found that Tx and activation energy (Eaexo ) of phase transition for doped-GST both increase with the increase of Ce content. Isothermal experiment found the Ce doping increases temperature for 10-yr data retention from 76 and 170°C. This is attributed to the presence of Ce solutes in GST matrix that inhibits the grain growth during recrystallization.

Static-mode electrical test on PCM device containing doped GST as the programming layer found that Ce incorporation indeed increases the switching threshold voltage (Vth). This confirmed that Ce doping effectively retards the crystallization of GST and improves the stability of amorphous GST.

This is a preview of subscription content, access via your institution.


  1. 1

    S. Lai and T. Lowrey, Tech. Dig. - Int. Electron Devices Meet. 2001, p. 803.

  2. 2

    A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, Tech. Dig. -Int. Electron Devices Meet. 2003, p. 699.

  3. 3

    Y. Lai, B. Qiao, J. Feng, Y. Ling, L. Lai, Y. Lin, T. Tang, B. Cai, and B. Chen, J. Electron. Mater. 34, 176 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Y. K. Kim, J. H. Baeck, M.-H. Cho, E. J. Jeong, and D.-H. Ko, J. Appl. Phys. 100, 083502 (2006).

    Article  Google Scholar 

  5. 5

    N. Matsuzaki, K. Kurotsuchi, Y. Matsui, O. Tonomura, N. Yamamoto, Y. Fujisaki, N. Kitai, R. Takemura, K. Osada, S. Hanzawa, H. Moriya, T. Iwasaki, T. Kawahara, N. Takaura, M. Terao, M. Matsuoka, and M. Moniwa, Tech. Dig. - Int. Electron Devices Meet. 2005, p. 738.

  6. 6

    S.W. Ryu, J.H. Oh, J.H. Lee, B.J. Choi, W. Kim, S.K. Hong, C.S. Hwang, and H.J. Kim, Appl. Phys. Lett. 92, 142110 (2008).

    Article  Google Scholar 

  7. 7

    B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin, T. Tang, B. Cai, and B. Chen, Appl. Surf. Sci. 252, 8404 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Y.J. Huang, Y.C. Chen, and T.E. Hsieh, J. Appl. Phys. 106, 034916 (2009).

    Article  Google Scholar 

  9. 9

    W.D. Song, L.P. Shi, X.S. Miao, and T.C. Chong, Appl. Phys. Lett. 90, 091904 (2007).

    Article  Google Scholar 

  10. 10

    C. T. Lie, P. C. Kuo, W. C. Hsu, T. H. Wu, P. W. Chen, and S. C. Chen, Jpn. J. Appl. Phys. 42, 1026 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Liqiu Men, Junji Tominaga, Hiroshi Fuji, Takashi Kikukawa, and Nobufumi Atoda, Jpn. J. Appl. Phys. Part 1 40, 1629 (2001).

    CAS  Article  Google Scholar 

  12. 12

    H. E. Kissinger, Anal. Chem. 29, 1702 (1957).

    CAS  Article  Google Scholar 

  13. 13

    R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed. (PWS, Boston, 1992), p. 241.

    Google Scholar 

  14. 14

    V.G. Karpov and Y.A. Kryukov, S.D. Savransky and I.V. Karpov, Appl. Phys. Lett. 90, 123504 (2007).

    Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, YJ., Tsai, MC., Wang, CH. et al. Ce Doped-GeSbTe Thin Films Applied to Phase-change Random Access Memory Devices. MRS Online Proceedings Library 1251, 305 (2010). https://doi.org/10.1557/PROC-1251-H03-05

Download citation