Silsesquioxane-based Photo-Patternable Porous Low-k Dielectric Materials


The future resolution requirements for the semiconductor industry demand advanced lithographic techniques, such as immersion and extreme ultraviolet (EUV) technologies, which will increase the cost of microelectronics manufacturing. Currently, low-k dielectric materials, which are used as insulating layers between the copper wiring, are indirectly patterned using a set of sacrificial layers and etch processes. The sacrificial layers include a photoresist polymer that must first be imaged prior to transferring the pattern to the underlying layers, including the dielectric layer. In order to reduce the number of processing steps required for semiconductor manufacturing, we have developed a novel photo-patternable low-k dielectric material that (1) eliminates the need for sacrificial layers and (2) reduces the number of wafer processing steps. Silsesquioxane copolymers that undergo acid-catalyzed crosslinking when exposed to 193nm wavelength were synthesized. In addition to the direct photo-patternability, the patterned structures are suitable as a dielectric material with a dielectric constant as low as 2.4, and an appreciable elastic modulus (E > 4.0 GPa). These photo-patternable low-k materials represent a ‘greener’ approach to semiconductor manufacturing which has the ability to reduce cost, waste materials, and energy consumption.

This is a preview of subscription content, access via your institution.


  1. 1.

    F. Pease and S. Y. Chou, Proceedings of the IEEE 96, 248–270 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    R. J.O.M. Hoofman, V. H. Nguyen, V. Arnal, M. Broekaart, L. G Gosset, W. F. A. Besling, M. Fayolle and F. Iacopi, in Dielectric Films for Advanced Microelectronics, Ed. M. Baklanov, K. Maex and M. Green, (Wiley, New York, 2007) pp. 199–240.

  3. 3.

    A. Hellmut, R. Roland and S. Recai, Applied Surface Science 106, 311–315, (1996).

    Article  Google Scholar 

  4. 4.

    A. Hellmut, L. Rainer and R Roland, Polymers for Advanced Technologies 4(4), 217– 233 (1993).

  5. 5.

    S. Griffith, M. Mondol, D. S. Kong and J. M. Jacobson, Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures 20(6), 2768–2772 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    I. Y. Yang, S. Silverman, J. Ferrera, K. Jackson, J. M. Carter, D. A. Antoniadis and H. I. Smith, Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer Structures 13(6), 2741–2744 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    W-L. Jen, F. Palmieri, B. Chao, M. Lin, J. Hao, J. Owens, K. Sotoodeh, R. Cheung and C.G. Willson, Proceedings of SPIE-The International Society for Optical Engineering 6517 (2007).

  8. 8.

    M. D. Stewart, J. T. Wetzel, G. M. Schmid, F. Palmieri, E. Thompson, E. K. Kim, D. Wang, K. Sotodeh, K. Jen and S. C. Johnson, Proceedings of SPIE-The International Society for Optical Engineering 5751, (2005).

  9. 9.

    F. Palmieri, M. Stewart, K. Jen, C. G. Wilson and G. Schmid, Solid State Technology 50(9), 42–45 (2007).

    CAS  Google Scholar 

  10. 10.

    R. D. Allen, P. J. Brock, B. Davis, G. J-M. Dubois, Q. Lin, R. D. Miller, A. Nelson, S. Purushothaman and R. Sooriyakumaran, “Photopatternable Dielectric Materials for BEOL Applications and Methods of Use” US 2009/0291389 A1.

  11. 11.

    G. Dubois,W. Volksen, T. Magbitang, R. D. Miller, D. M. Gage and R. H. Dauskardt, Adv. Mater. 19, 3989 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    K. A. Ezbiansky, B. Arkles, R. J. Composto and D. Berry, Mat. Res. Soc. Symp. Proc. 606, 251 (2000).

Download references

Author information



Corresponding author

Correspondence to Jitendra S. Rathore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rathore, J.S., Davis, B., Brock, P. et al. Silsesquioxane-based Photo-Patternable Porous Low-k Dielectric Materials. MRS Online Proceedings Library 1249, 602 (2010).

Download citation