Slurry Particle Agglomeration Model for Chemical Mechanical Planarization (CMP)


In this work we propose a particle agglomeration model for chemical mechanical planarization (CMP) under the primary motivation of understanding the creation and behavior of the agglomerated slurry abrasive particles during the CMP process, which are a major cause of defectivity and poor consumable utility due to sedimentation.

The proposed model considers the slurry composition as a colloidal suspension of charged colloidal silica in an electrically neutral aqueous electrolyte. First, a theoretical relationship between the measurable chemical parameters of the slurry’s aqueous electrolyte, the surface potential of the abrasive particles, and corresponding zeta potential between the agglomerated abrasive particles is presented. Secondly, this zeta potential is used in a modified DVLO interaction potential model to determine the particle interaction potentials due to both the attractive van Der Waals forces and repulsive electrostatic interactions. Finally, the total interaction potential created is then used to define a stability ratio for slow versus fast agglomeration and corresponding agglomeration rate equations between particles; these are used in a discrete population balance framework to describe the final particle size distribution with respect to time and agglomerate composition.

The proposed model will provide both a qualitative and quantitative description of agglomeration of abrasive slurry particles during CMP that can be extended to account for slurry composition or abrasive particle type, enabling more accurate process control, increased consumable utility, and possible defectivity reduction.

This is a preview of subscription content, access via your institution.


  1. 1.

    F.-C. Chang, S. Tanawade, and R. K. Singh, J. Electrochem. Soc., 156, H39 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    R. Biswas, Y. Han, P. Karra, P. Sherman and A. Chandra, J. Electrochem. Soc., 155, D534–D537 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    M. Moinpour, A. Tregub, A. Oehler, and K.Cadien, Mater. Res. Bulletin, 766, (2002).

  4. 4.

    F.-C. Chang and R. K. Singh, J. Electrochem. Solid-State Lett., 12, H127–H130 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    A. R. Mazaheri and G. Ahmadi, J. Electrochem. Soc., 150, G233–G239 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    S. Ramarajan, Y. Li, M. Hariharaputhiran, Y.-S. Her, and S. V. Babu, Electrochem. Solid-State Lett., 3(5), 232–234 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    C.L. A. Berli, M.V. Piaggio, J. A. Deiber, Electrophoresis 24, 1587–1595 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Rollie, H. Briesen, K. Sundmacher, J. Colloid Interface Sci. 336(2), 551–564 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    E.J.W. Verwey and J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).

  10. 10.

    R. Hogg, T.W. Healy and D.W. Fuerstenau, Trans. Faraday Soc. 62 (1966), p. 1638.

  11. 11.

    G.R. Wiese and T.W. Healy. Trans. Faraday Soc. 66 (1970), p. 490.

  12. 12.

    J. M. Steigerwald, S. P. Muraka, and R. J. Guttmann, Chemical Mechanical Planarization of Microelectronical Materials, John Wiley and Sons, New York (1997).

  13. 13.

    S. H. Li, R. O. Miller. Chemical Mechanical Polishing in Silicon Processing, Academic Press, California, (2000).

  14. 14.

    M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition and Aggregation, Butterworth-Heinemann, Oxford (1998).

  15. 15.

    M. von Smoluchowski, Z. Phys. Chem., 92, 129 (1917).

    Google Scholar 

  16. 16.

    N. Fuchs, Z. Phys. 89, 736 (1934).

    Google Scholar 

  17. 17.

    H.C. Hamaker, Physica IV, 2, 1058 (1937).

    Google Scholar 

  18. 18.

    Brookhaven Instruments Corporation.

Download references

Author information



Corresponding author

Correspondence to Joy M. Johnson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, J.M., Boning, D.S. Slurry Particle Agglomeration Model for Chemical Mechanical Planarization (CMP). MRS Online Proceedings Library 1249, 403 (2010).

Download citation