Skip to main content
Log in

Low Temperature Dopant Activation Using Variable Frequency Microwave Annealing

  • Article
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Variable frequency microwaves (VFM) and rapid thermal annealing (RTA) were used to activate ion implanted dopants and re-grow implant-damaged silicon. Four-point-probe measurements were used to determine the extent of dopant activation and revealed comparable resistivities for 30 seconds of RTA annealing at 900 °C and 6-9 minutes of VFM annealing at 540 °C. Ion channeling analysis spectra revealed that microwave heating removes the Si damage that results from arsenic ion implantation to an extent comparable to RTA. Cross-section transmission electron microscopy demonstrates that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Secondary ion mass spectroscopy reveals limited diffusion of dopants in VFM processed samples when compared to rapid thermal annealing. Our results establish that VFM is an effective means of low-temperature dopant activation in ion-implanted Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Technology Roadmap for Semiconductors (Semiconductor Industry Association) (http://www.itrs.net)

  2. J.W. Mayer and S.S. Lau, Electronic Materials Science: For Integrated Circuits in Si and GaAs, Macmillan Publishing Company, New York, NY (1990).

    Google Scholar 

  3. K.-N. Tu, J.W. Mayer, L.C. Feldman, and J.W. Mayer, Electronic Thin Film Science for Electrical Engineers and Materials Scientist, Macmillan Publishing Company, New York, NY (1992).

    Google Scholar 

  4. A.V. Rzhanov, N.N. Gerasimenko, S.V. Vasil’ev, and V.I. Obodnikov, Sov. Tech. Phys. Lett. 7, 521 (1981).

    Google Scholar 

  5. P. Kohli, S. Ganguly, T. Kirichenko, H.-J. Lee, S. Banerjee, E. Graetz, and M. Shevelev, J. Electron. Mater. 31, 214 (2004).

    Article  Google Scholar 

  6. T.L. Alford, D.C. Thompson, J.W. Mayer, and N.D. Theodore, J. Applied Physics 106, 114902 (2009).

    Article  Google Scholar 

  7. T.L. Alford, L.C. Feldman, and J.W. Mayer, Fundamentals of Nanoscale Film Analysis, Springer Publishing Company, New York, NY (2008).

    Google Scholar 

  8. D.C. Thompson, J. Decker, T.L. Alford, J.W. Mayer, N.D. Theodore, Materials Research Society Proceedings, 0989 A06-18 (2007).

    Article  Google Scholar 

  9. Y.-J. Lee, F.-K. Hsueh, S.-C. Huang, J.M. Kowalski, J.E. Kowalski, A.T. Y. Cheng, A. Koo, G.-L Luo, and C.-Y. Wu, IEEE Electron Device Lett. 30, 123 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alford, T.L., Sivaramakrishnan, K., Indluru, A. et al. Low Temperature Dopant Activation Using Variable Frequency Microwave Annealing. MRS Online Proceedings Library 1245, 1609 (2009). https://doi.org/10.1557/PROC-1245-A16-09

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1245-A16-09

Navigation