Rietveld Structure Refinement of Hydrothermally Grown Zinc Peroxide Nanoparticles

Abstract

Nanocrystals of zinc oxides have demonstrated to be very important materials for several applications in many fields, particularly in catalysis. Nanocrystalline zinc peroxide (ZnO2), which is a precursor of zinc oxide (ZnO), has been prepared by means of a hydrothermal process from zinc acetate dehydrates. On the other hand, it is of great interest to have a detailed structural characterization, in order to correlate it with the catalytic properties of the synthesized material. In this work, some results are presented about the nanostructure of the prepared zinc peroxide. By using X-ray diffraction followed of a pattern refinement by the Rietveld techniques, refined average cell parameters and crystallite size were calculated and, from these refined values, crystallite morphology was simulated in an averaged manner. With the aim to get a more complete characterization, besides these results, some micrographs of the crystalline structure of ZnO2, observed by TEM, were also included in this work.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Ibarra, A. Marcos-Fernandez, M. Alzorriz, Polymer 43, 1649 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    L. Ibarra, J. Appl. Polym. Sci. 84, 605 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    S. Ohno, Ν. Aburatani, Ν. Ueda, DE Patent # 2914058 (1980).

  4. 4.

    R. Hagel, K. Redecker, DE Patent # 2952069 (1981).

  5. 5.

    M. Ceratelli, Zinc, Part 1. Fonderia (Milan) 43, 24 (1994).

    Google Scholar 

  6. 6.

    M. Farnsworth, C.H. Kline, J.G. Noltes, Zinc Chem. 248 (1973).

  7. 7.

    D.A. Sunderland, J.S. Binkley, Radiology (Oak Brook, IL, United States) 35, 606 (1940).

    Google Scholar 

  8. 8.

    W. Klabunde, P.L. Magill, J.S. Reichert, US Patent # 2,304,104 (1942).

  9. 9.

    L. Rosenthal-Toib, K. Zohar, M. Alagem, Y. Tsur, Chem. Eng. J. 136, 425 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    N. Uekawa, J. Kajiwara, N. Mochizuki, K. Kakegawa, Y. Sasaki, Chem. Lett. 7, 606 (2001).

    Article  Google Scholar 

  11. 11.

    C.C. Hsu, N. L. Wu, J. Photochem. Photobiol. A 172, 269 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    M. Sun, W. Hao, C. Wang, T. Wang, Chem. Phys. Lett. 443, 342 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Y. C. Zhang, X. Wu, X. Ya Hu, R. Guo, J. Cryst. Growth 280, 250 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    T. Szabó, J. Németh, I. Dékány, Colloids Surf. A: Physicochem. Eng. Aspects 230, 23 (2004).

    Article  Google Scholar 

  15. 15.

    M.L. Curridal, R. Comparelli, P.D. Cozzli, G. Mascolo, A. Agostiano, Mater. Sci. Eng. C23, 285 (2003).

    Google Scholar 

  16. 16.

    V.P. Kamat, R. Huehn, R. Nicolaescu, J. Phys. Chem. Β 106, 788 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    S.B. Park, Y.C. Kang, J. Aerosol Sci. 28, (1997).

  18. 18.

    Gleiter, H. Acta Mater. 48, 1 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    W. Chen, Y. H. Lu, M. Wang, L. Kroner, H. Paul, H.-J. Fecht, J. Bednarcik, K. Stahl, Ζ. L. Zhang, U. Wiedwald, U. Kaiser, P. Ziemann, T. Kikegawa, C. D. Wu, J. Z. Jiang, J. Phys. Chem. C 113, 1320 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Article  Google Scholar 

  21. 21.

    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    M.N. Kamalasanan, S. Chandra, Thin Solid Films 288, 112 (1996).

    CAS  Article  Google Scholar 

  23. 23.

    D. Jezequel, J. Guenot, N. Jouini, N.F. Fievet, J. Mater. Res. 10, 77 (1995).

    CAS  Article  Google Scholar 

  24. 24.

    A.K. Chawla, D. Kaur, R. Chandra, Opt. Mater. 29, 995 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    K. Iwata, H. Tampo, A. Yamada, P. Fons, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, Appl. Surf. Sci. 244, 504 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    M. Izaki, T. Omi, Appl. Phys. Lett. 68, 2439 (1996).

    CAS  Article  Google Scholar 

  27. 27.

    J. Rodríguez-Carbajal, Laboratoire Leon Brillouin (CEA-CNRS), France.

  28. 28.

    P. Thompson, D.E. Cox, J.B. Hasting. J. Appl. Crystallogr. 20, 79 (1987).

    CAS  Article  Google Scholar 

  29. 29.

    R.A. Young, P. Desai. Arch. Nauki Mater. 10, 71 (1989).

    Google Scholar 

  30. 30.

    E. Prince. J. Appl. Crystallogr. 14, 157 (1981).

    CAS  Article  Google Scholar 

  31. 31.

    N.G. Vannerberg, Arkiv foer Kemi 14, 19 (1959).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Navarrete, M., Sánchez, C., Godínez, F.A. et al. Rietveld Structure Refinement of Hydrothermally Grown Zinc Peroxide Nanoparticles. MRS Online Proceedings Library 1242, 114 (2009). https://doi.org/10.1557/PROC-1242-S4-P114

Download citation