Ultrafast defect manipulation with optical anisotropy in fused silica


We report the evidence that the oxygen defects induced by focusing an intense infrared femtosecond laser pulse in fused silica can be self-organized by the interference pattern between photon and electron plasma wave. Self-organized nanostructure with a sub-wavelength modulation in refractive index exhibits form birefringence which is rewritable and directionally-controllable. Intriguingly, such optical anisotropy, which indicates a remarkable non-reciprocity, has initially evolved from residual birefringence originated from internal stress distribution due to local heating followed by structural change, regardless of interpulse time. This anisotropic light-matter interaction could be interpreted in terms of an asymmetric relation between light polarization and pulse front tilt. Apart from fundamental understanding of self-organization mechanism, the direction of encoded birefringence can introduce an entirely new concept for rewritable optical storage beyond the diffraction limit of light.

This is a preview of subscription content, access via your institution.


  1. 1.

    C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E. F. Aziz, M. Wietstruk, H. A. Dürr, and W. Eberhardt, Nature Mater. 6, 740 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    R. R. Gattas and E. Mazur, Nature Photonics 2, 219 (2008).

    Article  Google Scholar 

  4. 4.

    R. Birngruber, C. Puliafito, A. Gawande, W. -Z. Lin, R. Schoenlein, and J. Fujimoto, IEEE J. Quant. Electron. 23, 1836 (1987).

    Article  Google Scholar 

  5. 5.

    K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    Y. Shimotsuma, P. G. Kazansky, J. Qiu and K. Hirao, Phys. Rev. Lett. 91, 247705 (2003).

    Article  Google Scholar 

  8. 8.

    V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 96, 057404 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    J. B. Goodenough, Nature 404, 821 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, and M. Takano, Nature Mater. 4, 816 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, A. Arai, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 90, 151120 (2007).

    Article  Google Scholar 

  12. 12.

    J. C. Mikkelsen, Jr., Appl. Phys. Lett. 45, 1187 (1984).

    CAS  Article  Google Scholar 

  13. 13.

    E. Vanagas, J. -Y. Ye, M. Li, M. Miwa, S. Juodkazis, and H. Misawa, Appl. Phys. A 81, 725 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, Opt. Express 15, 5674 (2007).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yasuhiko Shimotsuma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shimotsuma, Y., Sakakura, M., Kazansky, P.G. et al. Ultrafast defect manipulation with optical anisotropy in fused silica. MRS Online Proceedings Library 1230, 705 (2009). https://doi.org/10.1557/PROC-1230-MM07-05

Download citation