Nanocomposite of Bi2Te3 with Metal Inclusions for Advanced Thermoelectric Applications


Recent experimental and theoretical studies have shown that the thermal to electrical power conversion efficiency (as measured by the thermoelectric figure of merit) can be enhanced in nanocomposite materials. Primarily, these efforts to improve the thermoelectric efficiency rely on reducing the lattice thermal conductivity through nanostructuring of the materials or the introduction of a second nanometer-scale phase into the composite material. Here, we show that the inclusion of semimetal nanoparticles into bismuth telluride (Bi2Te3) can result in both an increase in the electronic transport properties (so called “power factor”) as well as a decrease in lattice thermal conductivity. The effect of different volume fractions of Bi nanoinclusions (3% and 5%) on the thermal and electrical properties of the composite are reported. A marginal increase in the thermoelectric figure of merit is achieved for 3% metal nanoinclusion, whereas a significant improvement in the figure of merit could be achieved for 5% nanoinclusions in the Bi2Te3 thermoelectric matrix.

This is a preview of subscription content, access via your institution.


  1. 1

    H. J. Goldsmid, Electronic Refrigeration (Pion Ltd., London, 1986).

  2. 2

    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    CAS  Article  Google Scholar 

  3. 3

    S. V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  4. 4

    J. P. Heremans, C. M. Thrush, and D. T. Morelli, J. Appl. Phys. 98, 063703 (2005).

    Article  Google Scholar 

  5. 5

    M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).

    Article  Google Scholar 

  6. 6

    M. Zebarjadi, K. Esfarjani, A. Shakouri, Z. Bian, J.-H. Bahk, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, J. Electron. Mater. 38, 954 (2009).

    CAS  Article  Google Scholar 

  7. 7

    W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).

    Article  Google Scholar 

  8. 8

    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys Rev Lett 96, 045901 (2006).

    Article  Google Scholar 

  9. 9

    D. M. Misra, S. Sumithra, P. F. P. Poudeu, K. L. Stokes, and H. Gabrisch, in Energy Harvesting - From Fundamentals to Devices, Mater. Res. Soc. Proc., edited by H. Radouski, J. D. Holbery, L. H. Lewis and F. Schmidt (MRS, Warrendale, PA, 2009), Vol. 1218E, p. 668359.

  10. 10

    J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, New York, USA, 2001).

  11. 11

    H. Scherrer and S. Scherrer, in Thermoelectrics Handbook: Macro to Nano, edited by D. M. Rowe (CRC Press, Boca Raton, FL, USA, 2006), p. 27.

Download references

Author information



Corresponding author

Correspondence to Sumithra Santhanam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santhanam, S., Takas, N.J., Misra, D.K. et al. Nanocomposite of Bi2Te3 with Metal Inclusions for Advanced Thermoelectric Applications. MRS Online Proceedings Library 1218, 511 (2009).

Download citation