Skip to main content
Log in

Transient thermal imaging of Si/SiGe superlattice and bulk Si microrefrigerators

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper, we present a systematic study of the transient cooling in different Si/SiGe superlattices as well as bulk silicon microrefrigerators. Transient thermoreflectance imaging is used to obtain the temperature map of the device with sub micrometer spatial, 100ns temporal and 0.1C temperature resolution. It is shown that Peltier cooling dominates in the first 10-30 microseconds before Joule heating in the active and buffer layers reach the top surface. The transient characterization shows that at the optimum current for maximum steady-state cooling, the response of bulk silicon cooler is 25% faster than the 3 microns thick superlattice device and that of the 6 microns thick superlattice is 25% slower. However, it is possible to increase the cooling speed by a factor of two or three, down to 3.6 microseconds, by overdriving the current at the expense of the reduced steady-state cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D.L. Wijngaards), S.H. Kong, M. Bartek, R.F. Wolffenbuttel, Sensors and Actuators 85, 316 (2000)

    Article  CAS  Google Scholar 

  2. Yan Zhang, James Christofferson, Ali Shakouri, Gehong Zeng, John E. Bowers, Fellow, IEEE, and Edward T. Croke, Transactions on components and packaging technologies, 29, 395 (2006)

    Article  Google Scholar 

  3. Ihtesham Chowdhury, Ravi Prasher, Kelly Lofgreen, Gregory Chrysler, Sridhar Narasimhan, Ravi Mahajan, David Koester, Randall Alley and Rama Venkatasubramanian, Nature nanotechnology, 4, 235 (2009)

    Article  CAS  Google Scholar 

  4. Ali Shakouri and Yan Zhang IEEE Transactions on components and packaging technologies, 29, 65 (2005)

    Article  Google Scholar 

  5. H R Meddins and J E Parrott, J. Phys.C, 9, 1263, (1976)

    Article  CAS  Google Scholar 

  6. C.B.Vining, W. Laskow, J. 0. Hanson, R. R. Van der Beck, and P. D. Gorsuch, J.Appl.Phys, 69, 4333 (1991)

    Article  CAS  Google Scholar 

  7. X. Fan G. Zeng, E. Croke, C. LaBounty, C.C. Ahn, D. Vashaee, A. Shakouri and J.E. Bowers, Electronics Lett. 37, 126 (2001)

    Article  Google Scholar 

  8. Y. Ezzahri G. Zeng, K. Fukutani, Z. Bian, A. Shakouri, Microelectronics Journal 39, 981 (2008)

    Article  Google Scholar 

  9. James Christofferson and Ali Shakouri, Rev. Sci. Instrum, 76, 024903 (2005)

    Article  Google Scholar 

  10. Grauby, Amine Salhi, Luis-David Patino Lopez, Wilfrid Claeys, Benoît Charlot, Stefan Dilhaire, Microelectronics Reliability 48, 204–211 (2008)

    Article  Google Scholar 

  11. K. Maize J, Christofferson, A. Shakouri, 24th IEEE SEMI-THERM Symp. Proc, 55 (2008)

  12. S.Grauby, B. C. Forget, S. Holé, D. Fournier, Rev. Sci. Instrum, 70, 3603 (1999)

    Article  CAS  Google Scholar 

  13. J. Christofferson, Y. Ezzahri, K. Maize, and Ali Shakouri 25th IEEE SEMI-THERM Symp. Proc, 45(2009

  14. Ali Shakouri, Proceedings of the IEEE, 94, 1613 (2006)

    Article  CAS  Google Scholar 

  15. Xiaofeng Fan, PhD. Thesis, University of California Santa Barbara, 2001

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, H., Coppard, R., Kendig, D. et al. Transient thermal imaging of Si/SiGe superlattice and bulk Si microrefrigerators. MRS Online Proceedings Library 1218, 201 (2009). https://doi.org/10.1557/PROC-1218-Z02-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1218-Z02-01

Navigation