Development of Combined Optical Cell and Sieverts-type Apparatus for in-situ Measurement of Hydrogen Storage Materials


A parallel high-sensitivity hydrogen sorption, and in situ Raman/IR emissivity measurement system has been developed using a stainless-steel sample cell with a sapphire window to act as a bridge between the PCT and optical measurements. The cell can be pressurized up to 4.5 MPa and heated up to 723 K. The system can measure small changes in hydrogen content, down to 0.5 μg, allowing for characterization of small quantities of powers and thin films. Hydrogen desorption in LiNH2 - LiBH4 - MgH2 nanocomposites has been studied by in-situ Raman and PCT measurement, while that of MgH2 powers and thin films has been studied by in-situ PCT and IR emissivity. In powder samples, qualitative trend is observed between changes in the Raman peak intensity/IR emissivity and the amount of hydrogen absorbed or desorbed.

This is a preview of subscription content, access via your institution.


  1. 1.

    DOE 2009 annual merit review proceedings hydrogen storage.

  2. 2.

    Hydride materials data base.

  3. 3.

    G. Sandrock . J. Alloys Compd. 293–295 (1999) 877–888.

    Article  Google Scholar 

  4. 4.

    L. Schlapbach A. Züttel . Nature 414 (2001) 353–358.

    CAS  Article  Google Scholar 

  5. 5.

    B. Bogdanoviæ and M. Schwickardi . J. Alloys Compd. 253–254 (1997) 1–9.

    Article  Google Scholar 

  6. 6.

    L. Zaluski A. Zalyska J.O. Strim-Olsen . J. Alloys Compd. 290 (1999) 71–78.

    CAS  Article  Google Scholar 

  7. 7.

    G. Liang et al., J. Alloys Compd. 292 (1999) 247–252.

    CAS  Article  Google Scholar 

  8. 8.

    W. Zhou et al., J. Phys. Chem. C. 111 (2007) 16131–16137.

    CAS  Article  Google Scholar 

  9. 9.

    A. Ludwig J. Cao A. Savan and M. Ehmann J. Alloys Compd. 446 (2007) 516.

    Article  Google Scholar 

  10. 10.

    S. Guerin B. E. Hayden and D. C. A. Smith J. Comb. Chem. 10 (2008) 37.

    CAS  Article  Google Scholar 

  11. 11.

    R. Gremaud et al., Adv. Mater. 19 (2007) 2813.

    CAS  Article  Google Scholar 

  12. 12.

    B. Dam R. Gremaud C. Broedersz and R. Griessen Scr. Mater. 56 (2007) 853.

    CAS  Article  Google Scholar 

  13. 13.

    C. H. Olk G. G. Tibbetts D. Simon and J. J. Moleski J. Appl. Phys. 94 (2003) 720.

    CAS  Article  Google Scholar 

  14. 14.

    H. Oguchi E.J. Heilweil D. Josell L.A. Bendersky J. Alloys Compd. 477 (2009) 8–15.

    CAS  Article  Google Scholar 

  15. 15.

    H. Oguchi et al., Rev. Sci. Instrum. 80 (2009) 073707.

    CAS  Article  Google Scholar 

  16. 16

    J. R. Hattrick-Simpers et al., Article in preparation.

  17. 17.

    J. Yang et al., Angew. Chem. Int. Ed. 47 (2008) 882–887.

    CAS  Article  Google Scholar 

  18. 18.

    W. Luo and S. Sickafoose Journal of Alloys and Compounds 407 (2006) 274–281.

    CAS  Article  Google Scholar 

  19. 19

    M. U. Niemann et al. Int. J. of Hydrogen Energy (In Press, Corrected Proof).

  20. 20

    J. R. Hattrick-Simpers et al., Journal of Alloys and Compounds (In Press) doi:10.1016/j.jallcom.2009.10.054

  21. 21.

    L. Ibos et al., Meas. Sci. Technol. 17 (2006) 2950.

    CAS  Article  Google Scholar 

  22. 22.

    W. Sabuga R. Todtenhaupt High Temp.-High Pressures 33 (2001) 261.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to C. Chiu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chiu, C., Hattrick-Simpers, J.R., Heilweil, E.J. et al. Development of Combined Optical Cell and Sieverts-type Apparatus for in-situ Measurement of Hydrogen Storage Materials. MRS Online Proceedings Library 1216, 832 (2009).

Download citation