The Ammonia-Driven Phase Transition in Bulk and Nanostructured Potassium Graphite KC24

Abstract

We report the synthesis of nanostructured stage-2 potassium graphite, KC24, by intercalation of turbostratic graphite nanofibers produced from an electrospun polymer, and compare its properties with exfoliated graphite-based KC24. The nanostructured KC24 sample has low crystalline order and slightly increased interlayer spacing of 8.76 Å, compared with 8.65 Å in the bulk sample, indicating minimal registration of the graphite planes. Time-resolved time-of-flight neutron diffraction on both nanostructured and bulk KC24 under ammoniation is suggestive of a more homogeneous and faster pressure-modulated phase transition to the ternary ammoniated potassium-graphite in the nanostructured material. Following ammoniation, negligible hydrogen uptake is observed at 50 K.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Schlapbach and A. Zuettel Nature 414 23–31 (2001).

    Article  Google Scholar 

  2. 2.

    M. S. Dresselhaus and G. Dresselhaus Adv. Phys. 51 1–186 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    S. A. Solin and H. Zabel Adv. Phys. 37 87–254 (1988).

    CAS  Article  Google Scholar 

  4. 4.

    T. Enoki M. Suzuki and M. Endo Graphite Intercalation Compounds and Applications, Oxford University Press, Oxford, 2003.

    Google Scholar 

  5. 5.

    E. P. Gilbert P. A. Reynolds J. W. White J. Chem. Soc., Farad. Trans. 94 1861 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    C. Hérinckz, R. Perret and W. Ruland Carbon 10 711–722 (1972).

    Article  Google Scholar 

  7. 7.

    P. Kwizera M. S. Dresselhaus and G. Dresselhaus Carbon 21 121–129 (1983).

    CAS  Article  Google Scholar 

  8. 8.

    W. Rüdorff and E. Schulze Angew. Chem., 66 305 (1954).

    Article  Google Scholar 

  9. 9.

    B. R. York and S. A. Solin Phys. Rev. B 31 8206–8220 (1985).

    CAS  Article  Google Scholar 

  10. 10.

    W. Deng X. Xu W. A. Goddard Phys. Rev. Lett. 92 166103 (2004).

    Article  Google Scholar 

  11. 11.

    A. Lovell S M. Bennington N. T. Skipper C. Gejke H. Thompson M. A. Adams Physica B 385-386 163–165 (2006).

    Google Scholar 

  12. 12

    A. Lovell PhD Thesis, UCL (London) 2007.

  13. 13.

    N. Akuzawa S. Suzuki T. Terai and Y. Takahashi Synth. Met. 34 701–706 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    A. Lovell F. Fernandez-Alonso, N.T. Skipper K. Refson S.M. Bennington and S.F. Parker Phys. Rev. Lett. 101, 126101/1-4 (2008).

  15. 15.

    J. K. Walters N. T. Skipper and A. K. Soper Chem. Phys. Lett., 300 444–450 (1999).

    CAS  Article  Google Scholar 

  16. 16

    A. Lovell Z. Kurban S. M. Bennington et al., in preparation for publication

  17. 17.

    I. S. Chronakis J. Mat. Processing Tech. 167 283–293 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    S. F. Fennessey R. J. Farris Polymer, 45 4217–4225 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    S. Y. Gu J. Ren Q. L. Wu Synth. Met. 155 157–161 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    C. Kim YJ. Kim, YA Kim, Solid State Comm. 132 567–571 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Z. Kurban, A. Lovell S. M. Bennington et al., submitted to European Polymer Journal.

  22. 22

    P. Radaelli http://www.isis.stfc.ac.uk/instruments/osiris/data-analysis/ariel-manual9033.pdf

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arthur Lovell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovell, A., Kurban, Z., Stephen, M.B. et al. The Ammonia-Driven Phase Transition in Bulk and Nanostructured Potassium Graphite KC24 . MRS Online Proceedings Library 1216, 204 (2009). https://doi.org/10.1557/PROC-1216-W02-04

Download citation