Supporting metal catalysts on modified carbon nanocones to optimize dispersion and particle size

Abstract

Carbon nanocones are the fifth allotropic form of carbon, first synthesized in 1997. They have been selected for investigating hydrogen storage capacity, because initial temperature programmed desorption experiments found a significant amount of hydrogen was evolved at ambient temperatures. The aim of this work was to study the effect of impregnation conditions on metal catalyst dispersion and to investigate whether the metal loaded cones had improved hydrogen storage characteristics. Pre-treatment of carbon nanocones with hydrogen peroxide was carried out, followed by metal decoration in aqueous solution by an incipient wetness technique. Two methods of reducing the metal catalyst have been applied: in hydrogen at room temperature (RT) and in an aqueous solution of NaBH4. XRD confirmed the complete metal reduction and TEM showed that the reduction technique affected the catalyst dispersion. Very fine dispersions of ca. 1 nm diameter metal clusters at catalyst loadings of 5 wt.% were achieved and high dispersions were retained for loadings as high as 15 wt.%. Hydrogen uptakes at RT were measured and an increase with metal loading was observed.

References

  1. 1.

    H. Wang et al., Carbon, 2009. 47(9): P. 2259–2268.

    CAS  Article  Google Scholar 

  2. 2.

    E. Poirier R. Chahine and T.K. Bose . International Journal of Hydrogen Energy, 2001. 26(8): P. 831–835.

    CAS  Article  Google Scholar 

  3. 3.

    B.K. Gupta and O.N. Srivastava . International Journal of Hydrogen Energy, 2000. 25(9): P. 825–830.

    CAS  Article  Google Scholar 

  4. 4.

    C. Liu et al., Science, 1999. 286(5442): P. 1127–1129.

    CAS  Article  Google Scholar 

  5. 5.

    D. Lupu et al., International Journal of Hydrogen Energy, 2004. 29(1): P. 97–102.

    CAS  Article  Google Scholar 

  6. 6.

    F.H. Yang and R.T. Yang Carbon, 2002. 40(3): P. 437–444.

    CAS  Article  Google Scholar 

  7. 7.

    A. Kuznetsova et al., The Journal of Chemical Physics, 2000. 112(21): P. 9590–9598.

    CAS  Article  Google Scholar 

  8. 8.

    H. Zhu et al., Materials Chemistry and Physics, 2003. 78(3): P. 670–675.

    CAS  Article  Google Scholar 

  9. 9.

    A.D.Y. Lueking, R.T., AIChE Journal, 2003 (49): p. 1556.

    CAS  Article  Google Scholar 

  10. 10.

    W.H. Wang, Y.T. Lin and C.T. Kuo Diamond and Related Materials, 2005. 14(3-7): p. 907–912.

    CAS  Article  Google Scholar 

  11. 11.

    C. Furtado, F. Moraes and A.M. de M. Carvalho, Physics Letters A, 2008. 372(32): P. 5368–5371.

    CAS  Article  Google Scholar 

  12. 12.

    K. Sattler, Carbon, 1995. 33(7): P. 915–920.

    CAS  Article  Google Scholar 

  13. 13.

    H. Heiberg-Andersen, A.T. Skjeltorp and K. Sattler Journal of Non-Crystalline Solids, 2008. 354(47-51): p. 5247–5249.

    CAS  Article  Google Scholar 

  14. 14.

    W. Zhang et al., Carbon, 2009. 47(12): P. 2763–2775.

    CAS  Article  Google Scholar 

  15. 15.

    A.D. Lueking et al., Carbon, 2007. 45(4): P. 751–759.

    CAS  Article  Google Scholar 

  16. 16.

    X. Yu et al., Applied Surface Science, 2008. 255(5, Part 1): p. 1906–1910.

    CAS  Article  Google Scholar 

  17. 17.

    A. Ansón et al., Journal of Alloys and Compounds, 2007. 436(1-2): p. 294–297.

    Article  Google Scholar 

  18. 18.

    E. Antolini et al., Materials Chemistry and Physics, 2007. 101(2-3): p. 395–403.

    CAS  Article  Google Scholar 

  19. 19.

    http//rsbweb.nih.gov/ij/ij/.

  20. 20.

    K. Hernadi et al., Solid State Ionics, 2001. 141-142: p. 203–209.

    Google Scholar 

  21. 21.

    Y. Feng et al., Chemical Physics Letters, 2003. 375(5-6): p. 645–648.

    CAS  Article  Google Scholar 

  22. 22.

    C.H. Chen and C.C. Huang International Journal of Hydrogen Energy, 2007. 32(2): P. 237–246.

    CAS  Article  Google Scholar 

  23. 23.

    J.Q. Yang, B.H. Liu and S. Wu . Journal of Power Sources, 2009. 194(2): P. 824–829.

    CAS  Article  Google Scholar 

  24. 24.

    Y. Suttisawat et al., International Journal of Hydrogen Energy, 2009. 34(16): P. 6669–6675.

    CAS  Article  Google Scholar 

  25. 25.

    Z.P. Sun et al.. Electrochemistry Communications, 2009. 11(3): P. 557–561.

    CAS  Article  Google Scholar 

  26. 26.

    V. Calò, A. Nacci and A. Monopoli Journal of Molecular Catalysis A: Chemical, 2004. 214(1): P. 45–56.

    Article  Google Scholar 

  27. 27.

    G. Schmid, Clusters and Colloids. 1994, Weinheim: VCH.

    Google Scholar 

  28. 28.

    J. Zhu et al., Applied Catalysis A: General, 2009. 352(1-2): p. 243–250.

    CAS  Article  Google Scholar 

  29. 29.

    I.P. Beletskaya and A.V. Cheprakov Chemical Reviews, 2000. 100(8): P. 3009–3066.

    CAS  Article  Google Scholar 

  30. 30.

    T. B. Flanagan W.A.O., Annual Review of Materials Science 1991. 21: p. 269–304.

    CAS  Article  Google Scholar 

  31. 31.

    S.u. Rather et al., Chemical Physics Letters, 2007. 441(4-6): p. 261–267.

    CAS  Article  Google Scholar 

  32. 32.

    R. Zacharia et al., Chemical Physics Letters, 2005. 412(4-6): p. 369–375.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. S. Walker.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matelloni, P., Grant, D.M. & Walker, G.S. Supporting metal catalysts on modified carbon nanocones to optimize dispersion and particle size. MRS Online Proceedings Library 1216, 202 (2009). https://doi.org/10.1557/PROC-1216-W02-02

Download citation