Development of New Materials and Structures for Efficient Organic Solar Cells Fabricated with Ionically and Electrically Conducting Polymers

Abstract

New materials and structures have been developed for efficient organic solar cells, dye-sensitized solar cells (DCSs) and organic thin-film solar cells (OPVs). Some strategies for achieving high photon-to-electricity conversion efficiency in these solar cells are discussed, focusing on nanostructured materials. In the case of DSCs, unlike TiO2 nanoparticles, TiO2 nanotubes with suitable dimensions are expected to work as efficient light scatterers as well as to give large surface areas for charge separation. A strategy for designing triarylamine-functionalized ruthenium dyes, which display the high efficiency, is also proposed. Furthermore, OPVs based on donor/acceptor (D/A) block copolymers are discussed, focusing on the phase separation of donor and acceptor segments and their domain sizes.

This is a preview of subscription content, access via your institution.

References

  1. 1

    B. O’Regan and M. Grätzel, Nature, 353, 737 (1991).

    Article  Google Scholar 

  2. 2

    C. W. Tang Appl. Phys. Lett., 48, 183 (1986).

    CAS  Article  Google Scholar 

  3. 3

    M. Hiramoto H. Fujiwara and M. Yokoyama Appl. Phys. Lett., 58, 1062 (1991).

    CAS  Article  Google Scholar 

  4. 4

    N. S. Sariciftci L. Smilowitz A. J. Heeger and F. Wudl Science, 258, 1474 (1992).

    CAS  Article  Google Scholar 

  5. 5

    M. A. Green K. Emery Y. Hishikawa and W. Warta Prog. Photovolt: Res. Appl., 17, 320 (2009).

    CAS  Article  Google Scholar 

  6. 6

    M. Grätzel, Bull. Jpn. Soc. Coord. Chem. 51, 3 (2008).

  7. 7

    S. Altobello R. Argazzi S. Caramori C. Contado S. Da Fre, P. Rubino C. Chone G. Larramona, and C. A. Bignozzi J. Am. Chem. Soc., 127, 15342 (2005).

    CAS  Article  Google Scholar 

  8. 8

    J. T. Dy K. Tamaki Y. Sanehira J. Nakazaki S. Uchida T. Kubo H. Segawa Electrochemistry, 77, 206 (2009).

    CAS  Article  Google Scholar 

  9. 9

    P. Wang S. M. Zakeeruddin J. E. Moser M. K. Nazeeruddin T. Sekiguchi and M. Grätzel, Nature Materials, 2, 402 (2003).

    CAS  Article  Google Scholar 

  10. 10

    T. Asano T. Kubo and Y. Nishikitani J. Photochem. Photobiol. A Chemistry, 164, 111 (2004).

  11. 11

    W. Kubo S. Kambe S. Nakada T. Kitamura K. Hanabusa Y. Wada, and S. Yanagida J. Phys. Chem. B, 107, 4374 (2003)

    CAS  Article  Google Scholar 

  12. 12

    J. H. Kim M-S. Kang Y. J. Kim J. Won N-G. Park and Y. S. Kang Chem. Commun., 1662 (2004)

  13. 13

    T. Kato Kado T, S. Tanaka A. Okazaki ans S. Hayase J. Electrochem. Soc., 153, A626 (2006)

    CAS  Article  Google Scholar 

  14. 14

    K. Nakayama T. Kubo and Y. Nishikitani Jpn. J. Appl. Phys., 47, 6610 (2008); Appl. Phys. Exp. 1, 112301 (2008); Electrochem. Solid State Lett. 11 (3), C23 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Z. Jin H. Masuda N. Yamanaka M. Minami T. Nakamura and Y. Nishikitani ChemSusChem. 1, 901 (2008); J. Phys. Chem. C 113, 2618 (2009); Chem. Lett. 38 (1), 44 (2009).

    CAS  Article  Google Scholar 

  16. 16

    K. Zhu N. R. Neale A. Miedaner and A. J. Frank Nano Lett. 7, 69 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Q. Wang K. Zhu N. R. Neale and A. J. Frank ibid, 9, 806 (2009).

    CAS  Google Scholar 

  18. 18

    H. Spanggaard F. C. Krebs Sol. Energy Mater. Sol. Cells, 83, 125 (2004).

    CAS  Article  Google Scholar 

  19. 19

    W. Ma C. Yang X. Gong K. Lee and A. J. Heeger Adv. Funct. Mat. 15, 1617 (2005).

    CAS  Article  Google Scholar 

  20. 20

    B. de Boer, U. Stalmach P. F. van Hutten, C. Melzer V. V. Krasnikov G. Hadziioannou Adv. Funct. Mat. 42, 9097 (2001).

    Google Scholar 

  21. 21

    S. Sun Sol. Energy Mater. Sol. Cells, 79, 257 (2003).

    CAS  Article  Google Scholar 

  22. 22

    Nippon Oil Corporation (2002), WO2003/075364.

  23. 23

    E. Yablonovitch and G. Cody IEEE Trans. Electron Devices, ED-29, 300 (1982).

    Google Scholar 

  24. 24

    M. A. Green Prog. Photovolt: Res. Appl. 10, 235 (2002).

    CAS  Article  Google Scholar 

  25. 25

    J. Ferber J. Luthe Sol. Energy Mater. Sol. Cells, 54, 265 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Z.-S. Wang H. Kawauchi T. Kashima and H. Arakawa Cord. Chem. Rev. 248 1318 C. (2004).

    Article  Google Scholar 

  27. 27

    P. Latimer A. Bunsting B. E. Pyle and C. Moore Appl. Opt. 178, 1352 (1978).

    Google Scholar 

  28. 28

    Klein, M. K. Nazeeruddin P. Liska D. D. Censo N. Hirata E. Palomares J. R. Durrant and M. Grätzel, Inorg. Chem. 44, 178 (2005).

    CAS  Article  Google Scholar 

  29. 29

    M. C. Scharber D. Mühlbacher, M. Koppe P. Denk C. Waldauf A. J. Heeger and C. J. Brabec, Adv. Mater. 18, 789 (2006).

    CAS  Article  Google Scholar 

  30. 30

    S. Sun Z. Fan Y. Wang and J. Haliburton J. Mater. Sci. 40, 1429 (2005).

    CAS  Article  Google Scholar 

  31. 31

    M. Knupfer Appl. Phys. A, 77, 623 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Y. Nishikitani S. Uchida and T. Kubo in Nanostructured Materials for Solar Energy Conversion, Edited by T. Soga (Elsevier Science Publisher, Amsterdam, 2006), p. 319.

    Google Scholar 

  33. 33

    S. R. Scully and M. D. McGehee J. Appl. Phys. 100, 034907 (2006).

    Article  Google Scholar 

  34. 34

    S. R. Scully P. B. Armstrong C. Edder J. M. J. Fréchet, M. D. McGehee Adv. Mater. 19, 2961 (2007).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Nishikitani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishikitani, Y., Kubo, T. & Masuda, H. Development of New Materials and Structures for Efficient Organic Solar Cells Fabricated with Ionically and Electrically Conducting Polymers. MRS Online Proceedings Library 1211, 1003 (2009). https://doi.org/10.1557/PROC-1211-R10-03

Download citation