Photovoltaic Properties of Polyaniline-Titania Composite for Hybrid Solar Cells Applications


Solar energy harvesting has been extensively studied in the last three decades to provide a green energy source. Hybrid photovoltaics (HPV) based on titania (TiO2) are researched for their easiness of production and low cost. Nanostructured mesoporous titania films and conductive polymers were used recently to form hybrid solar cells [1]. TiO2, mainly an n-type semiconductor with a band gap of 4.2 eV, is employed in several applications from which paints form the highest world use of titania making it an attractive material to use in HPV industry. On the other side, our targeted conductive polymer is polyaniline (PANI), a hole conductor polymer, which is used in such HPV cells due to its high charge-carriers mobility, absorption coefficient in the visible range and environmental stability. PANI and nanocrystalline TiO2 films fabricated using spin coating or layer by layer assembly techniques behave as a p-n heterojunction diode and can be used as solar cells [2-4].

Precursor solutions are prepared by polymerizing aniline-HCl inside an aqueous solution of titania. To study the effect of the precursor concentration on the PANI-TiO2 composite, polymerization of aniline is held in diverse TiO2 concentrations in water. Industrial grade TiO2 powders with particle size ranging from 200 nm to several μm are used. PANI-TiO2 precursor solutions are dip coated or slot dyed on various substrates such as PMMA, PET and PP, all with metal oxide conductive coatings. Bulk PANI-TiO2 pellets are prepared for comparison. The electrical and photovoltaic properties of the obtained films and pellets are investigated to choose the optimum blend composition for HPV cell. Finally a theoretical study and an analytical model of the HPV cell are presented relating the size of TiO2 and PANI particles and their respective geometrical distribution inside the blend to the transport characteristics of charge carriers and the overall efficiency of the HPV cell.[1] M. McGehee, MRS Bulletin, Vol. 34, No. 2, February 2009.[2] Z. Liu, W. Guo, D. Fu and W. Chen, Synthetic Metals, Vol. 156, pp. 414–416, 2006.[3] Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synthetic Metals, Vol. 156, pp. 721–723, 2006.[4] X. Zhang, G. Yan, H. Ding and Y. Shan, Materials Chemistry and Physics, Vol. 102, pp. 249–254, 2007.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. [1]

    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  2. [2]

    L. Yang, Y. Lin, J. Jia, X. Li, X. Xiao and X. Xhou, Micropor. Mesopor. Mat. 112, 45 (2008).

  3. [3]

    Y. Yoshioka, M. Tsujimoto, M Koshino, T. Nemoto, T. Ogawa, H. Kurata and S. Isoda, Mol. Cryst. Liq. Cryst. 424, 95 (2004).

  4. [4]

    Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang and W. Chen, Synthetic Met. 156, 721 (2006).

    CAS  Article  Google Scholar 

  5. [5]

    Z. Liu, W. Guo, D. Fu and W. Chen, Synthetic Met. 156, 414 (2006).

    CAS  Article  Google Scholar 

  6. [6]

    M. McGehee, MRS Bulletin 34, February 2009.

  7. [7]

    Y. Li, J. Hagen and D. Haarer, Synthetic Met. 94, 273 (1998).

    CAS  Article  Google Scholar 

  8. [8]

    S. Tan, J. Zhai, M. Wan, L. Jiang and D. Zhu, Synthetic Met. 137, 1511 (2003).

    CAS  Article  Google Scholar 

  9. [9]

    S. Radhakrishnan, C. Siju, D. Mahanta, S. Patil and G. Madras, Electrochim. Acta 54, 1249 (2009).

    CAS  Article  Google Scholar 

  10. [10]

    A. Fujishima and K. Honda, Nature 238, 37 (1972).

  11. [11]

    X. Li, D. Wang, G. Cheng, Q. Luo, J. An and Y. Wang, Appl. Catal. B. 81, 267 (2008).

    CAS  Article  Google Scholar 

  12. [12]

    J. Stejskal and R. G. Gilbert, Pure Appl. Chem. 74, 857 (2002).

    CAS  Article  Google Scholar 

  13. [13]

    F. Cataldo and P. Maltese, Polym. Advan. Technol. 12, 293 (2001).

    CAS  Article  Google Scholar 

  14. [14]

    B. Kim, K. Lee, P. Huh, D. Lee, N. Jo and J. Lee, Synthetic Met. 159, 1369 (2009).

    CAS  Article  Google Scholar 

  15. [15]

    J. Xu, W. Liu and H. Li, Mat. Sci. Eng. C 25, 444 (2005).

    Article  Google Scholar 

  16. [16]

    Hanawalt et al., Anal. Chem. 10, 474 (1938).

    Google Scholar 

  17. [17]

    E. Kang, K. Neoh and K. Tan, Prog. Polym. Sci. 23, 277 (1998).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to I. Ibrahim Michael.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Michael, I.I., Maria, J.B., Umit, B.D. et al. Photovoltaic Properties of Polyaniline-Titania Composite for Hybrid Solar Cells Applications. MRS Online Proceedings Library 1211, 318 (2009).

Download citation