Electrical Resistance of Single-Wall Carbon Nanotubes with Determined Chiral Indices

Abstract

The properties of a carbon nanotube (CNT), in particular a single-wall carbon nanotube (SWNT), are highly sensitive to the atomic structure of the nanotube described by its chirality (chiral indices). We have grown isolated SWNTs on a silicon substrate using chemical vapor deposition (CVD) and patterned sub-micron probes using electron beam lithography. The SWNT was exposed by etching the underlying substrate for transmission electron microscope (TEM) imaging and diffraction studies. For each individual SWNT, its electrical resistance was measured by the four-probe method at room temperature and the chiral indices of the same SWNT were determined by nano-beam electron diffraction. The contact resistances were reduced by annealing to typically 3-5 kΩ. We have measured the I-V curve and determined the chiral indices of each nanotube individually from four SWNTs selected randomly – two are metallic and two are semiconducting. We will present the electrical resistances in correlation with the carbon nanotube diameter as well as the band gap calculated from the determined chiral indices for the semiconducting carbon nanotubes. These experimental results are also discussed in connection with theoretical estimations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. J. Biercuk, S. Ilani, C. M. Marcus and P. L. McEuen, “Electrical Transport in Single-Wall Carbon Nanotubes”, Science of Fullerenes and Carbon Nanotubes, eds. M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund. (Academic, 1996) pp.455–493.

  2. 2.

    L.-C. Qin, Rep. Prog. Phys. 69, 2761 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    M. P. Anantram and F. Leonard, Rep. Prog. Phys. 69, 507 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    H. Yorikawa and S. Muramatsu, Phys. Rev. B 52, 2723 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    J. C. Charlier, X. Blasé and S. Roche, Rev. Mod. Phys. 79, 677 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    T. Hertal, R. Walkup and P. Avouris, Phys. Rev. B 58, 13870 (1998).

    Article  Google Scholar 

  7. 7.

    E. Wong, P. Sheehan and C. Lieber, Science 277, 1971 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Li, J. Liu, Y. Q. Wang and Z. L. Wang, Chem. Mater. 13, 1008 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    A. R. Hall, L. An, J. Liu, L. Vicci, M. R. Falvo, R. Supefine and S. Washburn, Phys. Rev. Lett. 96, 256102 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Z. Liu and L.-C. Qin, Chem. Phys. Lett. 408, 75 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    C. Dekker, Phys. Today 52, 22 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    C. T. White and T. N. Todorov, Nature 393, 240 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller and P. Avouris, Phys. Rev. Lett. 92, 046401 (2004).

    Article  Google Scholar 

  14. 14.

    A. R. Hall, M. R. Falvo, R. Superfine and S. Washburn, Nature Nanotechnology 2, 413 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    D. Tomanek and M. A. Schluter, Phys. Rev. Lett. 67, 2331 (1991).

    CAS  Article  Google Scholar 

  16. 16.

    Z. Yao, C. L. Kane and C. Dekker, Phys. Rev. Lett. 84, 2941 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    V. Perebeions, J. Terso and P. Avouris, Phys. Rev. Lett. 94, 86802 (2005).

    Article  Google Scholar 

  18. 18.

    D. Mann, A. Javey, J. Kong, Q. Wang and H. J. Dai, Nano Lett. 3, 1541 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    A. Naeemi and J. D. Meindl, IEEE Elec. Dev. Lett. 28, 135 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    L. Yang, M. P. Anantram, J. Han and J. P. Lu, Phys. Rev. B 60, 13874 (1999).

    CAS  Article  Google Scholar 

  21. 21.

    T. W. Tombler, C. Zhou, L. Alexseyev, H. J. Dai, L. Liu, C. S. Jayanthi, M. Tang and S.-Y. Wu, Nature 405, 769 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    D. Chen, T. Sasaki, J. Tang and L.-C. Qin, Phys. Rev. B 77, 125412 (2008).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Letian Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, L., Qin, LC., Washburn, S. et al. Electrical Resistance of Single-Wall Carbon Nanotubes with Determined Chiral Indices. MRS Online Proceedings Library 1204, 706 (2009). https://doi.org/10.1557/PROC-1204-K07-06

Download citation