Growth of Carbon Nanotubes on Copper Substrates Using a Nickel Thin Film Catalyst


Carbon nanotubes with their attractive properties, one-dimensional character, and their large aspect ratio are ideal candidates for a variety of applications including energy storage, sensing, nanoelectronics, among others. We have studied the growth of carbon nanotubes on copper substrates using a nickel thin film as a catalyst. The catalyst was sputtered in a chamber having a base pressure in the ultra-high-vacuum regime. By adjusting the sputtering parameters, the effects of the morphology and the thickness of the nickel catalyst on the growth of carbon nanotubes have also been investigated. Multiple hydrocarbon sources as carbon feedstock (methane, acetylene and xylene) and corresponding catalyst precursors and varying temperature conditions were used during the Chemical Vapor Deposition (CVD) process to understand and best determine the ideal conditions for carbon nanotube growth on copper. Correlation between the thickness of the thin film nickel catalyst and the carbon nanotube diameter is also presented in the study. Characterization techniques used to study the morphology of the CNTs grown on copper include SEM, TEM and HRTEM, Raman Spectroscopy

This is a preview of subscription content, access via your institution.


  1. 1.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Google Scholar 

  2. 2.

    P.J.F. Harris, Carbon Nanotubes and Related Structures, (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  3. 3.

    M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, (Academic, New York, 1996).

    Google Scholar 

  4. 4.

    T.W. Ebbesen and P.M. Ajayan, Nature 358, 220 (1992).

    CAS  Article  Google Scholar 

  5. 5.

    W.Z. Li, J.G. Wen, Y. Tu, and Z.F. Ren, Appl. Phys. A: Mater. Sci. Process 73, 259 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, and G. Wang, Science 274, 1701 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, and P.N. Provencio, Science 282, 1105 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    S. Esconjauregui, C.M. Whelan, and K. Maex, Carbon 47, 659 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Y.S. Li and A. Hirose, Applied Surface Science 255, 2251 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    L. Gao, A. Peng, Z.Y. Wang, H. Zhang, Z. Shi, Z. Gu, G. Cao, and B. Ding, Solid State Solid State Commun. 146, 380 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    F. Bonnet, F. Ropital, Y. Berthier and P. Marcus, Mater. Corr. 54, 870 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    P.K. de Bokx, A.J.H.M. Kock, E. Boellaard, W. Klop, and J.W. Geus, J. Catal. 96, 454 (1985).

    Article  Google Scholar 

  13. 13.

    S. Sinharoy, M.A. Smith, and L.L. Levenson, Surf. Sci. 72, 710 (1978).

    CAS  Article  Google Scholar 

  14. 14.

    S. Sinharoy and L.L. Levenson, Thin Solid Films 53, 31 (1978).

    CAS  Article  Google Scholar 

  15. 15.

    N. Lin, H. Wang, P. Dixit, T. Xu, S. Zhang, and J. Miao, J. Electrochem. Soc. 156, K23 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    H. Wang, J.Y. Feng, X.J. Hu, and K.M. Ng, J. Phys. Chem. C. 111, 12617 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin, X. Sun, Y. Zhang, C. Yan, Y. Li, Nano Letters 6, 2987 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Nano Letters 6, 2642 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    G. Li, S. Chakrabarti, M. Schulz, and V. Shanov, J. Mater. Res. 24, 2813 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    S.K. Pal, S. Talapatra, S. Kar, L. Ci, R. Vajtai, T. Borca-Tasciuc, L.S. Schadler, and P.M. Ajayan, Nanotechnology 19, 045610 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    N.M. Rodriguez, J. Mater. Res. 80, 3233 (1993).

    Google Scholar 

  22. 22.

    L.C. Qin, D. Zhou, A.R. Krauss, and D.M. Gruen, Appl. Phys. Lett. 72, 3437 (1998).

    CAS  Article  Google Scholar 

  23. 23.

    H. Kanzow and A. Ding, Phys. Rev. B 60, 11180 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    R.T.K. Baker, Carbon 27, 315 (1989).

    CAS  Article  Google Scholar 

  25. 25.

    Y.Y. Wei, G. Eres, V.I. Merkulov, and D.H. Lowndes, Appl. Phys. Lett. 78, 1394 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    R. Jones, S. Öberg, J. Goss, P.R. Briddon, and A. Resende, Phys. Rev. Lett. 75, 2734 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    S.H. Overbury, P.A. Bertrand, and G.A. Somorjai, Chem. Rev. 75, 547 (1975).

    CAS  Article  Google Scholar 

  28. 28.

    R.A. DiLeo, B.J. Landi, and R.P. Raffaelle, J. Appl. Phys. 101, 064306 (2007).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Gowtam Atthipalli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atthipalli, G., Kumta, P., Wang, W. et al. Growth of Carbon Nanotubes on Copper Substrates Using a Nickel Thin Film Catalyst. MRS Online Proceedings Library 1204, 519 (2009).

Download citation