Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint


The unique one-dimensional electronic and optical properties attributed to single-walled carbon nanotubes (SWCNTs) are mainly related to the peculiar local arrangement of sp2 hybridised carbon atoms. This structural configuration gives raise to interesting features, which can be identified with various spectroscopic techniques. In the case of SWCNTs, high energy spectroscopy methods represent effective key tools to analyse the modifications of the underlying basic correlation effects in the bonding environment, the charge transfer between functionalized nanotubes, and on-wall doping. More specifically, in this article we review the shape of the C1s photoemission (PES) response related to the density of states (DOS) of the valence band (VB) in SWCNTs and its changes upon on-wall functionalization and metallicity-sorting. In the last, the progress in the identification of changes in the site selective valence-band electronic structure is clarified in detail.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes (1998) Imperial College Press, London.

    Google Scholar 

  2. 2.

    N. Hamada, S. Sawada, and A. Oshiyama, Phys Rev Lett. 68,1579 (1992).

    CAS  Article  Google Scholar 

  3. 3.

    P. Ayala, R. Arenal, A. Loiseau, A. Rubio, T. Pichler, Rev Mod Phy, 2010 (In Press)

  4. 4.

    T. Pichler, New Diam. Front. Carbon Technol, 11, 375 (2001).

    CAS  Google Scholar 

  5. 5.

    Y. Miyata, K. Yanagi, Y. Maniwa, and H. Kataura, J Phys Chem C 112, 13187 (2008).

    CAS  Article  Google Scholar 

  6. 6.

    A. Scholl, Y. Zou, T. Schmidt, R. Fink, and E. Umbach, J Electron Spec Rel Phenom, 129, 1 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    C. Kramberger, H. Rauf, H. Shiozawa, M. Knupfer, B. Buchner, T. Pichler, D. Batchelor, and H. Kataura, Phys Rev B, 75, 235437 (2007).

    Article  Google Scholar 

  8. 8.

    H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, et al., Nature, 426, 540 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    H. Rauf, T. Pichler, M. Knupfer, J. Fink, and H. Kataura, Phys Rev Lett, 93, 096805 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    P. Ayala, Y. Miyata, K. De Blauwe, H. Shiozawa, Y. Feng, K. Yanagi, C. Kramberger, S.R.P. Silva, R. Follath, H. Kataura, and T. Pichler, Phys Rev B, 80, 205427 (2009)

    Article  Google Scholar 

  11. 11.

    S. Doniach and M. Sunjic, Jour Phys C, 3, 285 (1970).

    CAS  Article  Google Scholar 

  12. 12.

    K.C. Prince, I. Ulrych, M. Peloi, B. Ressel, V. Chab, C. Crotti, and C. Comicioli, Phys Rev B, 62, 6866 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    S. Suzuki, C. Bower, T. Kiyokura, K. G. Nath, Y. Watanabe, and O. Zhou, J Elect Spectr Relat Phenom, 114, 225 (2001).

    Article  Google Scholar 

  14. 14.

    A. Goldoni, C. Cepek, R. Larciprete, L. Sangaletti, S. Pagliara, G. Paolucci, and M. Sancrotti, Phys Rev Lett, 88, 196102 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    P. Ayala, R. Arenal, M.H. Rümmeli, A. Rubio, T. Pichler, Carbon, 48, 575 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    S. Kim, J. Lee, C. Na, J. Park, K. Seo, and B. Kim, Chem Phys Lett, 413, 300 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    P. Ayala, A. Grüneis, T. Gemming, D. Grimm, C. Kramberger, M.H. Rümmeli, F.L. Freire Jr., H. Kuzmany, R. Pfeiffer, A. Barreiro, B. Büchner, and T. Pichler, Jour Phys Chem C, 101, 2879 (2007)

    Article  Google Scholar 

  18. 18.

    P. Ayala, F.L. Freire Jr., M.H. Rümmeli, A. Grüneis, T. Pichler, Phys Stat Sol B, 244, 4051 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    A.L. Elias, P. Ayala., A. Zamudio, M. Grobosch, E. Cruz-Silva, J.M. Romo-Herrera, J. Campos, H. Terrones, T. Pichler, M. Terrones, Jour Nanosc Nanotech, 6, 1 (2010)

    Google Scholar 

  20. 20.

    P. Gai, , O. Stephan, K. McGuire, A. Rao, M. Dresselhaus,G. Dresselhaus, and C. Colliex, Jour Mat Chem, 14, 669 (2004).

    CAS  Article  Google Scholar 

  21. 21.

    P. Ayala, W. Plank, A. Grüneis, E. Kauppinen, M. Rümmeli, H. Kuzmany, and T. Pichler, Jour Mat Chem, 18, 5676 (2008)

    CAS  Article  Google Scholar 

  22. 22.

    S. Daothong, J. Parjanne, E. I. Kauppinen, M. Valkeapaa, T. Pichler, P. Singjai and P. Ayala, Phys Stat Sol B, 246, 2518 (2009)

    CAS  Article  Google Scholar 

  23. 23.

    T. Shirasaki, A. Derré, M. Ménétrier, A. Tressaud, and S. Flandrois, Carbon, 38, 1461 (2000)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Ayala.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ayala, P., Kramberger, C., Miyata, Y. et al. Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint. MRS Online Proceedings Library 1204, 405 (2009).

Download citation