Compact and Efficient HFCVD for Electronic Grade Diamond and Related Materials


A compact and efficient hot filament chemical vapor deposition system has been designed for growing electronic-grade diamond and related materials. We report here the effect of substrate rotation on quality and uniformity of HFCVD diamond films on 2” wafers, using two to three filaments with power ranging from 500 to 600 Watt. Diamond films have been characterized using x-ray diffraction, Raman Spectroscopy, scanning electron microscopy and atomic force microscopy. Our results indicate that substrate rotation not only yields uniform films across the wafer, but crystallites grow larger than without sample rotation. Well-faceted microcrystals are observed for wafers rotated at 10 rpm. We also find that the Raman spectrum taken from various locations indicate no compositional variation in the diamond film and no significant Raman shift associated with intrinsic stresses. Results are discussed in the context of growth uniformity of diamond film to improve deposition efficiency for wafer-based electronic applications.

This is a preview of subscription content, access via your institution.


  1. 1

    Jie Yang, Weixiao Huang, T.P. Chow, and James E. Butler, Mater. Res. Soc. Symp. Proc. Vol. 905E, (2006).

  2. 2

    J. L. Davidson, W. P. Kang, K. Holmes, A. Wisitsora-at, P. Taylor, V. Pulugurta, R. Venkatasubramanian, and F. Wells, “CVD Diamond for Components and Emitters,” Diamond and related Materials, 10, pp. 1736–1742, 2001.

    CAS  Article  Google Scholar 

  3. 3

    “Diamond Chemical Vapor Deposition” by H. Liu and D.S. Dandy (1995).

  4. 4

    Chen, Qijin, Jie Yang, and Zhangda Lin, Appl. Phys. Lett. 67(13) (1995) 1853–1855.

    Article  Google Scholar 

  5. 5

    Zhu, W., F. R. Sivazlian, B. R. Stoner, and J. T. Glass, J. Mater. ResNucl 10.2 (1995) 425–430.

    CAS  Article  Google Scholar 

  6. 6

    Zhou, X. T., H. L. Lai, H. Y. Peng, C. Sun, W. J. Zhang, N. Wang, I. Bello, C. S. Lee, and S. T. Lee, Diamond and Related Materials 9 (2000) 134–139.

    CAS  Article  Google Scholar 

  7. 7

    Gupta, S., B. R. Weiner, W. H. Nelson, and G. Morell, Journal of Raman Spectroscopy 34 (2003) 192–198.

    CAS  Article  Google Scholar 

  8. 8

    Liu, Wei, and Changzhi Gu, Thin Solid Films 467 (2004) 4–9.

    Article  Google Scholar 

  9. 9

    Wang, Q., C. Z. Gu, Z. Xu, J. J. Li, Z. L. Wang, X. D. Bai, and Z. Cui, J. Appl. Phys. 100 (2006) 1–5.

    Article  Google Scholar 

  10. 10

    Kromka, A., F. Balon, T. Danis, J. Pavlov, J. Janik, V. Dubravcova, and I. Cerven, Surface Engineering 19.6 (2003) 417–420.

    CAS  Article  Google Scholar 

  11. 11

    Janischowsky, K., W. Ebert, and E. Kohn, 12 (2003) 336–339.

    CAS  Google Scholar 

  12. 12

    Larijani, M. M., A. Navinrooz, and F. Le Normand, Thin Solid Films 501 (2006) 206–210.

    CAS  Article  Google Scholar 

  13. 13

    Feng, Xu, Zuo Dunwen, Lu Wenzhuang, and Wang Min, Transactions of Nanjing University of Aeronautics & Astronautics 24.4 (2007) 317–322.

    Google Scholar 

  14. 14

    H.Y. Yap, B. Ramaker, A.V. Sumant, R.W. Carpick, Diamond & Related Materials 15, 1622–1628 (2006).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. D. Vispute.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vispute, R.D., Seiser, A., Lee, G. et al. Compact and Efficient HFCVD for Electronic Grade Diamond and Related Materials. MRS Online Proceedings Library 1203, 1725 (2009).

Download citation