Simulations of CVD Diamond Film Growth Using a Simplified Monte Carlo Model


A simple 1-dimensional Monte Carlo (KMC) model has been developed to simulate the chemical vapour deposition (CVD) of a diamond (100) surface. The model considers adsorption, etching/desorption, lattice incorporation, and surface migration along and across the dimer rows. The reaction probabilities for these processes are re-evaluated in detail and their effects upon the predicted growth rates and morphology are described. We find that for standard CVD diamond conditions, etching of carbon species from the growing surface is negligible. Surface migration occurs rapidly, but is mostly limited to CH2 species oscillating rapidly back and forth between two adjacent radical sites. Despite the average number of migration hops being in the thousands, the average diffusion length for a surface species is <2 sites.

This is a preview of subscription content, access via your institution.


  1. 1

    P.W. May, Science 319, 1490 (2008).

    CAS  Article  Google Scholar 

  2. 2

    P.W. May, Phil. Trans. Roy. Soc. Lond. A 358, 473 (2000).

    CAS  Article  Google Scholar 

  3. 3

    D.G. Goodwin and J.E. Butler, in: M.A. Prelas, G. Popovici, L.K., Bigelow, Eds., Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).

    Google Scholar 

  4. 4

    S. J. Harris, Appl. Phys. Lett. 56, 2298 (1990).

    CAS  Article  Google Scholar 

  5. 5

    J.E. Butler, R.L. Woodin, L.M. Brown, P. Fallon, Phil. Trans. Roy. Soc: Phys. Sci. and Eng. 342, 209 (1993).

    CAS  Article  Google Scholar 

  6. 6

    P.W. May, Yu.A. Mankelevich, J. Phys. Chem. C 112, 12432 (2008).

    CAS  Article  Google Scholar 

  7. 7

    P.W. May, N.L. Allan, J.C. Richley, M.N.R. Ashfold, Yu.A. Mankelevich, J. Phys. Cond. Matter 21, 364203 (2009).

    Article  Google Scholar 

  8. 8

    P.W. May, N.L. Allan, M.N.R. Ashfold, J.C. Richley, Yu.A. Mankelevich, Diamond Relat. Mater. (2010), in press (doi: 10.1016/j.diamond.2009.10.030).

  9. 9

    S. Skokov, B. Weiner, M. Frenklach, J. Phys. Chem. 98, 7073 (1994).

    CAS  Article  Google Scholar 

  10. 10

    A. Cheesman, J.N. Harvey, M.N.R. Ashfold, J. Phys. Chem. A, 112, 11436 (2008).

    CAS  Article  Google Scholar 

  11. 11

    J.C. Richley, J.N. Harvey and M.N.R. Ashfold, J. Phys. Chem. A 113, 11416 (2009).

    CAS  Article  Google Scholar 

  12. 12

    K. Larsson, J.-O. Carlsson, phys. stat. sol. (a) 186, 319 (2001).

    CAS  Article  Google Scholar 

  13. 13

    J.C. Richley, J.N. Harvey, M.N.R. Ashfold, Poster J17.32, Proc. MRS Fall Meeting 2009.

  14. 14

    A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comp. Phys. 17, 10 (1975).

    Article  Google Scholar 

  15. 15

    Yu.A. Mankelevich, M.N.R. Ashfold, J. Ma, J. Appl. Phys. 104, 113304 (2008).

    Article  Google Scholar 

  16. 16

    T. Van Regemorter, K. Larsson, J. Phys. Chem. A 112, 5429 (2008).

    Article  Google Scholar 

  17. 17

    S.J. Klippenstein, Y. Georgievskii, L.B. Harding, Phys. Chem. Chem. Phys. 8, 1133 (2006).

    CAS  Article  Google Scholar 

  18. 18

    R.E. Rawles, S.F. Komarov, R. Gat, W.G. Morris, J.B. Hudson, M.P. D’Evelyn, Diamond Relat. Mater. 6, 791 (1997).

    CAS  Article  Google Scholar 

  19. 19

    R.E. Stallcup II, J.M. Perez, Phys. Rev. Letts. 86, 3368 (2001).

    CAS  Article  Google Scholar 

  20. 20

    A. Netto, M. Frenklach, Diamond Relat. Mater. 14, 1630 (2005).

    CAS  Article  Google Scholar 

  21. 21

    M. Frenklach, S. Skokov, J. Phys. Chem. B 101, 3025 (1997).

    CAS  Article  Google Scholar 

  22. 22

    C.M. Donnelly, R.W. McCullough, J. Geddes, Diamond Relat. Mater. 6, 787 (1997).

    CAS  Article  Google Scholar 

  23. 23

    C.C. Battaile, D.J. Srolovitz, Annu. Rev. Mater. Res. 32, 297 (2002).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Paul William May.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

May, P.W., Harvey, J.N., Allan, N.L. et al. Simulations of CVD Diamond Film Growth Using a Simplified Monte Carlo Model. MRS Online Proceedings Library 1203, 1602 (2009).

Download citation