Skip to main content
Log in

Characterization of Nano-crystalline Diamond Films Grown Under Continuous DC Bias During Plasma Enhanced Chemical Vapor Deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O.A. Williams, M. Nesládek, M. Daenen, Sh. Michaelson, A. Hoffman, E. Ōsawa, K. Haenen, R.B. Jackman, Diamond Relat. Mater. 17, 1080 (2008).

    Article  CAS  Google Scholar 

  2. A. Krueger, Advanced Mater. 20, 2444 (2008).

    Article  Google Scholar 

  3. H. Huang, Pierstorff, E. Osawa, D. Ho, Nano Lett. 7, 3305 (2007).

    Article  CAS  Google Scholar 

  4. N. Jiang, K. Sugimoto, K. Eguchi, T. Inaoka, Y. Shintani, H. Makita, A. Hatta, A. Hiraki, J. Cryst. Growth 222, 591 (2001).

    Article  CAS  Google Scholar 

  5. M. Schreck, T. Baur, R. Fehling, M. Muller, B. Stritzker, A. Bergmaier, G. Dollinger, Diamond Relat. Mater. 7, 293 (1998).

    Article  CAS  Google Scholar 

  6. C.Z. Gu, X. Jiang, J. Appl. Phys. 88, 1788 (2000).

    Article  CAS  Google Scholar 

  7. V. Mortet, M. Daenen, T. Teraji, A. Lazea, V. Vorlicek, J. D’Haen, K. Haenen, M. D’Olieslaeger, Diamond Relat. Mater. 17, 1330 (2008).

    Article  CAS  Google Scholar 

  8. T. Sharda, T. Soga, T. Jimbo, M. Umeno, Diamond Relat. Mater. 10, 352 (2001).

    Article  CAS  Google Scholar 

  9. A.C. Ferrari, J. Robertson, Phys. Rev. B 63 (2001) 121405(R).

    Article  Google Scholar 

  10. H. Kuzmany, R. Pfeiffer, N. Salk, B. Gunther, Carbon 42 (2004) 911.

    Article  CAS  Google Scholar 

  11. T. Lopez-Rios, E. Sandre, S. Leclercq, E. Sauvain, Phys. Rev. Lett. 76 (1996) 4935.

    Article  CAS  Google Scholar 

  12. S. Reich, C. Thomsen, Phil. Trans. R. Soc. Lond. A 362, 2271 (2004).

    Article  CAS  Google Scholar 

  13. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  14. M. Yoshikawa, Y. Yuri, M. Maegawa, G. Katagiri, H Ishida, A. Ishitani, Appl. Phys. Lett. 62, 3114 (1993).

    Article  CAS  Google Scholar 

  15. J. Chen, S.Z. Deng, J. Chen, Z.X. Yu, and N.S. Xu, Appl. Phys. Lett. 74, 3651 (1999).

    Article  CAS  Google Scholar 

  16. R.J. Nemanich, S.A. Solin, R. M. Martin, Phys. Rev. B 23, 6348 (1981).

    Article  CAS  Google Scholar 

  17. H. Boppart, J. van Straaten, I. Silver, Phys. Rev. B 32, 1423 (1985).

    Article  CAS  Google Scholar 

  18. G. Socrates, Infrared and Raman characteristic group frequencies – tables and charts, 3rd ed. (John Weiley & Sons Ltd, Chichester, 2001) p. 50.

    Google Scholar 

  19. B.F. Mantel, M. Stammler, J. Ristein, L. Ley, Diamond Relat. Mater. 9, 1032 (2000).

    Article  CAS  Google Scholar 

  20. Sh. Michaelson, O. Ternyak, R. Akhvlediani, O.A. Williams, D. Gruen, A. Hoffman, Phys. Stat. Sol. (a) 204, 2860 (2007).

    Article  CAS  Google Scholar 

  21. Bernhard Schrader, Infrared and Raman spectroscopy – Methods and applications (VCH Verlagsgesellschaft mbH, Weinheim, 1995), p.197–199.

    Book  Google Scholar 

  22. Sh. Michaelson and A. Hoffman, Diamond Relat. Mater. 15, 486 (2006).

    Article  CAS  Google Scholar 

  23. P. K. Bachmann and D. U. Wiechert, Diam. Relat. Mater. 1, 422 (1992).

    Article  CAS  Google Scholar 

  24. J.-Y. Kim, E.-R. Kim, D.-W. Ihm, M. Tasumi, Bull. Korean Chem. Soc. 23, 1404 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortet, V., Zhang, L., Echert, M. et al. Characterization of Nano-crystalline Diamond Films Grown Under Continuous DC Bias During Plasma Enhanced Chemical Vapor Deposition. MRS Online Proceedings Library 1203, 503 (2009). https://doi.org/10.1557/PROC-1203-J05-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1203-J05-03

Navigation