Studies of the blue to red phase transition in polydiacetylene nanocomposites and blends


The conjugated polymeric backbone of polydiacetylenes (PDAs), comprising of alternating ene-yne groups, undergo intriguing stress-, chemical- or temperature-induced chromatic phase transitions associated with the disruption of the backbone structure and shortening of the conjugation length. PDAs, such as polymerized 10, 12 pentacosadiynoic acids (PCDA), when incorporated with inorganic oxides form nanocomposites and uniform blends with polymers. Blends of poly-PCDA with polymers, such as polyvinyl alcohol, polyvinylidene fluoride and cellulose increase the blue to red transition temperature without affecting the irreversibility of the red phase. However, the addition of zinc oxide to pure poly-PCDA makes the red phase highly reversible and substantially increases the blue to red transition temperature. The addition of TiO2 to poly-PCDA on the other hand does not affect the irreversibility of the red phase and the chromatic transition temperature. In order to understand the atomic scale interactions associated with these changes in the chromatic transitions, we have investigated both the nanocomposites and polymer blends using Raman and Fourier-transform infrared spectroscopy, and extended X-ray absorption fine structure (EXAFS) measurements.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    R. W. Carpick, D. Y. Sasaki, M. S.Marcus, M. A. Eriksson and A. R. Burns, J.Physics: Condensed Matter 16, R679 (2004).

    CAS  Google Scholar 

  2. 2.

    S. Lee and J-M. Kim, J. Macromolecules 40, 26 (2007).

    Article  Google Scholar 

  3. 3.

    Y. Lu, Y. Yang, A. Sellinger, M. Lu, J. Huang, H. Fan, R. Hadded, G. Lopez, A.R. Burns, D. Y. Sasaki, J. Shelnutt and C. J. Brinker, Nature 410, 913 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    S. Dei, A. Matsumoto and A. Matsumoto, Macromolecules 41, 2467 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Z. Iqbal, N. S. Murthy, Y. P. Khanna, J. S. Szobota, R. A. Dalterio and F. J. Owens, J.Phys.C: Solid State Phys. 20, 4283(1987).

    CAS  Article  Google Scholar 

  6. 6.

    M. Wenzel and G. H. Atkinson, J.Amer.Chem. Soc. 111, 6123 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    H. Eckhardt, D. S. Boudreaux and R. R. Chance, J. Chem. Phys 85, 4116 (1986).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Gu, W. Cao, L. Zhu, D. Chen, and M. Jiang, Macromolecules 41, 2299 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    D. J. Ahn, E-H. Chae, G. S. Lee, H-Y. Shim, T-E. Chang, K-D. Ahn, and J-M. Kim, J. Amer.Chem. Soc. 125, 8976 (2003).

    CAS  Article  Google Scholar 

Download references


This work has been supported by the US Army, ARDEC.

Author information



Corresponding author

Correspondence to Anitha Patlolla.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patlolla, A., Wang, Q., Frenkel, A. et al. Studies of the blue to red phase transition in polydiacetylene nanocomposites and blends. MRS Online Proceedings Library 1190, 1104 (2009).

Download citation