Schizophrenie Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing


Molecular photoswitches like spiropyrans derivatives offer exciting possibilities for the development of analytical platforms incorporating photo-responsive materials for functions such as light-activated guest uptake and release and optical reporting on status (passive form, free active form, guest bound to active form). In particular, these switchable materials hold tremendous promise for microflow-systems, in view of the fact that their behaviour can be controlled and interrogated remotely using light from LEDs, without the need for direct physical contact. We demonstrate the immobilisation of these materials on microbeads which can be incorporated into a microflow system to facilitate photoswitchable guest uptake and release. We also introduce novel hybrid materials based on spiropyrans derivatives grafted onto a polymer backbone which, in the presence of an ionic liquid, produces a gel-like material capable of significant photoactuation behaviour. We demonstrate how this material can be incorporated into microfluidic platforms to produce valve-like structures capable of controlling liquid movement using light.

This is a preview of subscription content, access via your institution.


  1. 1.

    Shenker S, {etet al}., ACM SIGCOMM Computer Communication Review, 2003. 33 (1): p. 137–142.

    Article  Google Scholar 

  2. 2.

    Diamond, D., Internet-scale sensing. Analytical Chemistry, 2004. 76 (15): p. 278A–286A.

    CAS  Article  Google Scholar 

  3. 3.

    Diamond, D., Internet-scale chemical sensing: is it more than a vision? NATO Security through Science, Series A: Chemistry and Biology, 2006. 2(Advances in Sensing with Security Applications): p. 121–146.

    CAS  Article  Google Scholar 

  4. 4.

    Byrne, R. and D. Diamond, Chemo/bio-sensor networks. Nature Materials, 2006. 5 (6): p. 421–424.

    CAS  Article  Google Scholar 

  5. 5.

    Rosario, R., {etet al}., Photon-Modulated Wettability Changes on Spiropyran-Coated Surfaces. Langmuir, 2002. 18 (21): p. 8062–8069.

    CAS  Article  Google Scholar 

  6. 6.

    Szilagyi, A., et al., Rewritable Microrelief Formation on Photoresponsive Hydrogel Layers. Chemistry of Materials, 2007. 19 (11): p. 2730–2732.

    CAS  Article  Google Scholar 

  7. 7.

    Crano, J. C., et al., Photochromic compounds: chemistry and application in ophthalmic lenses. Pure and Applied Chemistry, 1996. 68 (7): p. 1395–1398.

    CAS  Article  Google Scholar 

  8. 8.

    Guglielmetti, R., Spiropyrans and related compounds [applications]. Studies in Organic Chemistry (Amsterdam), 1990. 40(Photochromism: Mol. Syst.): p. 855–78.

    CAS  Google Scholar 

  9. 9.

    Dvornikov, A. S. and P. M. Rentzepis, Accessing 3D memory information by means of nonlinear absorption. Optics Communications, 1995. 119 (3,4): p. 341–6.

    CAS  Article  Google Scholar 

  10. 10.

    Willner, I., et al., Reversible light-stimulated activation and deactivation of a-chymotrypsin by its immobilization in photoisomerizable copolymers. Journal of the American Chemical Society, 1993. 115 (19): p. 8690–4.

    CAS  Article  Google Scholar 

  11. 11.

    Collins, G. E., et al., Photoinduced switching of metal complexation by quinolinospiropyranindolines in polar solvents. Chemical Communications (Cambridge), 1999(4): p. 321–322.

    Google Scholar 

  12. 12.

    Collins, G. E., et al., Spectrophotometric Detection of Trace Copper Levels in Jet Fuel. Energy & Fuels, 2002. 16 (5): p. 1054–1058.

    CAS  Article  Google Scholar 

  13. 13.

    Winkler, J. D., C. M. Bowen, and V. Michelet, Photodynamic Fluorescent Metal Ion Sensors with Parts per Billion Sensitivity. Journal of the American Chemical Society, 1998. 120 (13): p. 3237–3242.

    CAS  Article  Google Scholar 

  14. 14.

    Suzuki, T., et al., Photo-reversible Pb2+-complexation of insoluble poly(spiropyran methacrylate-co-perfluorohydroxy methacrylate) in polar solvents. Chemical Communications (Cambridge, United Kingdom), 2003(16): p. 2004–2005.

    Google Scholar 

  15. 15.

    Gorner, H., Photochromism of nitrospiropyrans: effects of structure, solvent and temperature. Physical Chemistry Chemical Physics, 2001. 3 (3): p. 416–423.

    CAS  Article  Google Scholar 

  16. 16.

    Gorner, H. and A. K. Chibisov, Complexes of spiropyran-derived merocyanines with metal ions - Thermally activated and light-induced processes. Journal of the Chemical Society-Faraday Transactions, 1998. 94 (17): p. 2557–2564.

    CAS  Article  Google Scholar 

  17. 17.

    Evans, L., III, et al., Selective Metals Determination with a Photoreversible Spirobenzopyran. Analytical Chemistry, 1999. 71 (23): p. 5322–5327.

    CAS  Article  Google Scholar 

  18. 18.

    Ipe, B. I., S. Mahima, and K. G. Thomas, Light-Induced Modulation of Self-Assembly on Spiropyran-Capped Gold Nanoparticles: A Potential System for the Controlled Release of Amino Acid Derivatives. Journal of the American Chemical Society, 2003. 125 (24): p. 7174–7175.

    CAS  Article  Google Scholar 

  19. 19.

    Stitzel, S., R. Byrne, and D. Diamond, LED switching of spiropyran-doped polymer films. Journal of Materials Science, 2006. 41 (18): p. 5841–5844.

    CAS  Article  Google Scholar 

  20. 20.

    Byrne, R. J., S. E. Stitzel, and D. Diamond, Photoregenerable surface with potential for optical sensing. Journal of Materials Chemistry, 2006. 16 (14): p. 1332–1337.

    CAS  Article  Google Scholar 

  21. 21.

    Frisch, M. J. T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A., GAUSSIAN 03. 2004, Gaussian Inc: Wallingford CT.

    Google Scholar 

  22. 22.

    MacFarlane, D. R., et al., Lewis base ionic liquids. Chemical Communications (Cambridge, United Kingdom), 2006(18): p. 1905–1917.

    Google Scholar 

  23. 23.

    Modig, K., B. G. Pfrommer, and B. Halle, Temperature-Dependent Hydrogen-Bond Geometry in Liquid Water. Physical Review Letters, 2003. 90 (7): p. 075502.

    Article  Google Scholar 

  24. 24.

    Byrne, R., et al., Photo- and solvatochromic properties of nitrobenzospiropyran in ionic liquids containing the [NTf2]- anion. Physical Chemistry Chemical Physics, 2008. 10 (38): p. 5919–5924.

    CAS  Article  Google Scholar 

  25. 25.

    Radu, A., et al., Photonic modulation of surface properties: a novel concept in chemical sensing. Journal of Physics D: Applied Physics, 2007. 40 (23): p. 7238–7244.

    CAS  Article  Google Scholar 

  26. 26.

    M. -S. Kim, et al., Transducers, 2003.

    Google Scholar 

  27. 27.

    Adam, T., Lüdtke S., and K. K. Unger, Application of 0.5-μm porous silanized silica beads in electrochromatography Journal of Chromatography A, 1997. 786 (2): p. 229–235.

    Article  Google Scholar 

  28. 28.

    Adam, T., Lüdtke S., and K. K. Unger, Packing and stationary phase design for capillary electroendosmotic chromatography (CEC). Chromatographia, 1999. 49: p. S49–S55.

    CAS  Article  Google Scholar 

  29. 29.

    Silvia Scarmagnani, et al., Polystyrene bead-based system for optical sensing using spiropyran photoswitches. Journal of Materials Chemistry, 2008. 18: p. 5063–5071.

    CAS  Article  Google Scholar 

  30. 30.

    Reber, N., et al., Transport properties of thermo-responsive ion track membranes. Journal of Membrane Science, 2001. 193 (1): p. 49–58.

    CAS  Article  Google Scholar 

  31. 31.

    Sugiura, S., et al., Photoresponsive polymer gel microvalves controlled by local light irradiation. Sensors and Actuators, A: Physical, 2007. A140 (2): p. 176–184.

    Article  Google Scholar 

  32. 32.

    Kameda, M., et al., Photoresponse gas permeability of azobenzene-functionalized glassy polymer films. Journal of Applied Polymer Science, 2003. 88 (8): p. 2068–2072.

    CAS  Article  Google Scholar 

  33. 33.

    Kim, S. J., et al., Surprising shrinkage of expanding gels under an external load. Nature Materials, 2006. 5 (1): p. 48–51.

    CAS  Article  Google Scholar 

  34. 34.

    Eddington, D. T., et al., An organic self-regulating microfluidic system. Lab on a Chip, 2001. 1 (2): p. 96–99.

    CAS  Article  Google Scholar 

  35. 35.

    Sugiura, S., et al., Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens. Actuators, A FIELD Full Journal Title:Sensors and Actuators, A: Physical, 2007. A140 (2): p. 176–184.

    Article  Google Scholar 

  36. 36.

    Sugiura, S., et al., On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip, 2009. 9: p. 196–198.

    CAS  Article  Google Scholar 

Download references


Authors would like to thank Science Foundation Ireland for continued support, under grants 07/CE/L1147 (CLARITY) and 07/RFP/MASF812. FBL would like to thank the Irish Research Council for Science, Engineering and Technology (IRCSET) fellowship number 2089. RB would like to thank Dr. Ekaterina Izgorodina for her helpful discussions on theoretical calculations.

Author information



Corresponding author

Correspondence to Robert Byrne.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Byrne, R., Scaramagnani, S., Radu, A. et al. Schizophrenie Molecules and Materials with Multiple Personalities - How Materials Science could Revolutionise How we do Chemical Sensing. MRS Online Proceedings Library 1190, 0801 (2009).

Download citation