The Synthesis and Structures of Elpasolite Halide Scintillators


Low-cost, high-performance gamma-ray spectrometers are urgently needed for nonproliferation and homeland security applications. Available scintillation materials fall short of the requirements for energy resolution and sensitivity at room temperature. The emerging lanthanide halide based materials, while having the desired luminosity and proportionality, have proven difficult to produce in the large sizes and low cost required due to highly anisotropic properties caused by the non-cubic crystal structure. New cubic materials, such as the recently discovered elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise for scintillator materials due to their high light output, proportionality, and toughness. The isotropic nature of the cubic elpasolites leads to minimal thermomechanical stresses during single-crystal solidification, and eliminates the problematic light scattering at the grain boundaries. Therefore, it may be possible to produce these materials in large sizes as either single crystals or transparent ceramics with high production yield and reduced costs. In this study, we investigated the “cubic” elpasolite halide synthesis and studied the structural variations of four different compounds, including Cs2NaLaBr6, Cs2LiLaBr6, Cs2NaLaI6, and Cs2LiLaI6. Attempts to produce a large-area detector by a hot forging technique were explored.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. Knoll, Radiation Detection and Measurement, 3rd ed., New York: Wiley, 1999.

  2. 2.

    O. Guillot-Noël, J. T. M. de Hass, P. Dorenbos, C.W.E. van Eijk, K. Krämer, and H. U. Gődel, “Optical and scintillation properties of cerium-doped LaCl3, LuBr3, and LuCl3,” J. Lumin., 85 21–35 (1999).

    Article  Google Scholar 

  3. 3.

    E.V.D. van Loef, P. Dorenbos, C. W. E. van Eijk, K. Krämer, and H. U. Gődel, “High energy resolution scintillator: Ce+3 activated LaBr3,” Appl. Phys. Lett., 79 [10] 1573–1575 (2001).

    Article  Google Scholar 

  4. 4.

    K. S. Shah, J. Glodo, W. H. Higgins, E. V. D. van Loef, W. W. Moses, S. E. Derenzo and M. J. Weber, “CeBr3 scintillators for gamma-ray spectroscopy,” IEEE Trans. Nucl. Sci., 52 [6] 3157–3159 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    M. D. Birowosuto, P. Dorenbos, and C. W. E. van Eijk, K.W. Krämer, and H. U. Gődel, “High-light-output scintillator for photodiode readout: LuI3: Ce3+,” J. Appl. Phys., 99 123520 (2006).

    Article  Google Scholar 

  6. 6.

    J. Glodo, W. M. Higgins, E. V. D. van Loef, and K. S. Shah, “GdI3:Ce – A new gamma and neutron scintillator,” IEEE Nucl. Sci. Symposium Conference Record, 1574–1577 (2006).

  7. 7.

    F. P. Doty, D. McGregor, M. Harrison, K. findley and R Polichar, “Structure and property of lanthanide halides,” SPIE 6707, 670705 (2007).

    Google Scholar 

  8. 8.

    P. Yang, T. J. Boyle, N. S. Bell, M. R. Sanchez, L. A. M. Ottley, and C. F. Chen, “Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection,” Sandia Report, Sandia National Laboratories, SAND2008-6978 and SAND2007-0719.

  9. 9.

    K. Krämer, T. Schleid, M. Schulze, W. Urland, and G. Mayer, “Three Bromides of Lanthanum: LaBr2, La2Br5 and LaBr3,” Z. Anorg. Allg. Chem., 575 61–70 (1989).

    Article  Google Scholar 

  10. 10.

    G. Meyer, “The synthesis and structures of complex rare-earth halides,” Prog. Solid St. Chem., 14, 141–219 (1982).

    CAS  Article  Google Scholar 

  11. 11.

    J. Glodo, E. V. D. van Loef, W. M. Higgins, and K. S. Shah, “Scinillation Properties of Cs2NaLaI6:Ce,” 2006 IEEE Nuclear Science Symposium Conference Record N30-164 (2006).

  12. 12.

    M. E. Villafuerte-Catrejon, M. R. Estrada, J. Gomez-Lara, J. Duque, and R. Pomes, “ Crystal structure of Cs2KTbCl6 and Cs2KEuCl6 by powder X-ray diffraction,” J. Solid State Chem., 132 1–5 (1997).

    Article  Google Scholar 

  13. 13.

    T. J. Boyle, P. Yang, L. A. M. Ottley, M. A. Rodriguez, T. M. Alam and S. Hoppe, “Synthesis, characterization, and processing of hydrates and anhydrous species of simple and mixtures lanthanum halide materials for scintillator application,” in preparation (2008).

  14. 14.

    J. Kutscher and A. Schneide, “Chemistry of rare earths in melten alkaline halides. 8. Study on diagrams of state of lanthanide (III) iodides in mixture of alkaline iodides,” Z. Anorg. Allg. Chem., 386 [1] 38–46 (1971).

    CAS  Article  Google Scholar 

  15. 15.

    J. Sangster and A. D. Pelton, “Phase diagrams and thermodynamic properties of the 70 binary alkali-halide systems having common ions,” J. Phys. Chem., 16 [3] 509–561 (1987).

    CAS  Google Scholar 

  16. 16.

    C. Reber, H. Gődel, G. Meyer, T. Schleid, C. A. Dual, “Optical spectroscopic and structural-properties of V+3-doped fluoride, chloride, and bromide elpasolite lattices,” Inorganic Chem., 28 [16] 3249–3581 (1989).

    CAS  Article  Google Scholar 

  17. 17.

    L. Liu, W. Lu, and N. Chen, “On the criteria of formation and lattice distortion of perovskite-type complex halides,” J. Phys. Chem. Solids, 65 855–860 (2004).

    CAS  Article  Google Scholar 

  18. 18.

    R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalogenides,” Acta Cryst., A32 751–766 (1976)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Pin Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, P., Doty, F.P., Rodriguez, M.A. et al. The Synthesis and Structures of Elpasolite Halide Scintillators. MRS Online Proceedings Library 1164, 1105 (2009).

Download citation