High-Temperature Fiber Matrix Composites for Reduction of Radiation Heat Transfer

Abstract

Recent progress in fabrication technology allows for the efficient control of electromagnetic waves by means of photonic devices. This could be attractive and promising also for high-temperature photonic structures to control electromagnetic heat transfer at temperatures above 1000 oC. We discuss the literature and present our own results on Fiber Matrix Composites (FMC), which could be superior to high-temperature metals or monolithic ceramics and can be designed for photonic applications. Possible applications include the protection of non-rotating components in high-temperature engines and turbines such as combustors and liners, coatings and parts for aerospace vehicles. Our discussion includes the material aspect and some relevant structure features. The use of woven fabrics to design new photonic band gap structures is discussed. An example of the use of the plane-wave expansion method for FMC design is given.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J.-M. Lourtioz, H. Benisty, V. Beger, J.-M. Gerard, D. Maystre, A. Tchelnokov, “Photonic Crystals. Towards Nanoscale Photonic Devices”, (Springer, 2008).

  2. 2

    V. Shklover, L. Bragisnky, G. Witz, M. Mishrikey, Ch. Hafner, J. Comput. Theoret. Nanoscience 5, 862 (2008).

    CAS  Article  Google Scholar 

  3. 3

    M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, R. Miller, Appl. Cer. Technol. 3, 81 (2006).

    CAS  Article  Google Scholar 

  4. 4

    S. Y. Lin, J. Moreno, J. G. Fleming, Appl. Phys. Lett. 83, 380 (2003).

    CAS  Article  Google Scholar 

  5. 5

    H. S. Sözüer, J. P. Dowling, J. Mod. Phys. 41, 231 (1994).

    Google Scholar 

  6. 6

    K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, Sol. St. Com. 89, 413 (1994).

    CAS  Article  Google Scholar 

  7. 7

    J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, “Photonic Crystals. Molding the Flow of Light”, (Princeton University Press, 2008), pp. 100–102.

  8. 8

    Y.-C. Tsai, K. W.-K. Shung, J. B. Pendry, J. Phys.: Condens. Matter. 10, 753 (1998).

    CAS  Google Scholar 

  9. 9

    Y.-C. Tsai, J. B. Pendry, K. W.-K. Shung, Phys. Rev. B 59, R10401 (1999).

    CAS  Article  Google Scholar 

  10. 10

    V. Shklover, Chem. Mater. 17, 608 (2005).

    CAS  Article  Google Scholar 

  11. 11

    K. A. Keller, G. Jefferson, R. J. Kerans, “Oxide-oxide Composites,” Handbook of Ceramic Composites”, ed. N. P. Bansal (Kluwer Academic Publishers, 2005) pp. 377–421.

  12. 12

    T. Gries, J. Stüve, T. Grundmann, “Textile Reinforcement Structures”, Ceramic Matrix Composites, ed. W. Krenkel (Wiley-VCH, 2008), pp. 21–47.

  13. 13

    L. Braginsky, V. Shklover, Phys. Rev. B 73, 085107 (2006).

    Article  Google Scholar 

  14. 14

    J. C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. B 203, 385 (1904).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Valery Shklover.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shklover, V., Braginsky, L., Mishrikey, M. et al. High-Temperature Fiber Matrix Composites for Reduction of Radiation Heat Transfer. MRS Online Proceedings Library 1162, 305 (2009). https://doi.org/10.1557/PROC-1162-J03-05

Download citation