Mechanical Scaling Trends and Methods to Improve Reliability of Packaged Interconnect Structures


Low dielectric constant (low-k) materials are currently being incorporated into advanced microelectronic devices to improve or maintain performance. As the dielectric constant is reduced, so are its mechanical properties. These reduced properties have recently been related to chip-package interaction (CPI) failures. Significant effort has focused on eliminating CPI failures through engineering of copper crackstop structures. However, published data suggests that crackstop engineering needs to occur at each technology node to ensure CPI reliability. In this study, the focus is on repairing interfacial delaminations with chemistry specific coupling agents rather than attempting to stop them with a specially designed crackstop structure. Critical adhesion values and corrosion resistance of the repaired interfaces are compared to the original interface. The application of the repair chemistry in an integrated structure is discussed along with the potential impact on reliability.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1

    M. Lane, T. M. Shaw, X. H. Liu and E. G. Liniger, IEEE Transactions on Device and Materials Reliability, 4, 142–147 (2004).

    CAS  Article  Google Scholar 

  2. 2

    A. Grill, D. Edelstein, M. Lane, V.Patel, S. Gates, D. Restaino and S. Molis, J. Appl. Phys. 103, 054104 (2008); DOI:10.1063/1.2844483.

    Article  Google Scholar 

  3. 3

    X.H. Liu et. al., Proc. Of Int. Interconnect Tech. Conf. 2007, p. 13–15.

  4. 4

    S. Sankaran et. al., , Proc of Int. Interconnect Tech. Conf. 2006, p. 187–190.

  5. 5

    M.W. Lane, Proc. Of the 31st Annual Meeting of The Adhesion Society 2008, p. 352–4.

  6. 6

    M. W. Lane, R. H. Dauskardt, A. Vainchtein, H. Gao, J. Mater. Res., 15, 2758–69 (2000).

    CAS  Article  Google Scholar 

  7. 7

    S. M. Wiederhorn, J. Amer. Ceram. Soc., 50, 407–414 (1967).

    CAS  Article  Google Scholar 

  8. 8

    B. R. Lawn, Mater. Sci. Eng., 13, 277–283, (1974).

    CAS  Article  Google Scholar 

  9. 9

    A. Krishnamoorthy, K. Chanda, S. P. Murarka, G. Ramanath, and J. G. Ryan, Appl. Phys. Lett. 78, 17, 2467 (2001).

    CAS  Article  Google Scholar 

  10. 10

    P. G. Ganesan, J. Gamba, A. Ellis, R. S. Kane, and G. Ramanath, Appl. Phys. Lett. 83, 16, 3302–3305 (2003).

    CAS  Article  Google Scholar 

  11. 11

    P. G. Ganesan, A. P. Singh, and G. Ramanath, Appl. Phys. Lett. 85, 3, (2004).

  12. 12

    G. Ramanath, G. Cui, P. G. Ganesan, X. Guo, A. Ellis, M. Stukowski, K. Vijayamohanan, P. Doppelt, and M. Lane, Appl. Phys. Lett. 83, 2, 383–385 (2003).

    CAS  Article  Google Scholar 

  13. 13

    B. Arkles, CHEMTECH, 7, 766, (1977).

    CAS  Google Scholar 

  14. 14

    RH Dauskardt, M W Lane, Q Ma, N Krishna; Eng. Fract. Mech., 61, 141–62, (1998).

    Article  Google Scholar 

  15. 15

    M. W. Lane, J. M. Snodgrass, R. H. Dauskardt, Microelectron. Reliab. 41, 1615–24 (2001).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Michael W. Lane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lane, M.W., Roush, A. & Callahan, S.E. Mechanical Scaling Trends and Methods to Improve Reliability of Packaged Interconnect Structures. MRS Online Proceedings Library 1158, 101 (2008).

Download citation