Thermodynamics and Kinetics for Suppression of GeO Desorption by High Pressure Oxidation of Ge

Abstract

We analyze a main scheme for the suppression of GeO desorption by the high pressure oxidation which drastically improve the electrical quality of Ge/GeO2 capacitors. The inherent driving force for GeO to form at the Ge/GeO2 interface and to diffuse toward the GeO2 surface was realized by the concentration gradient in the GeO2 film, which was obtained from the thermodynamic calculation. Kinetic consideration based on the comparison with Si/SiO2 stacks suggests that GeO desorption at the GeO2 surface is the rate-limiting process under passive oxidation conditions. When O2 pressure is increased by high pressure oxidation, the vapor pressure of GeO at the GeO2 surface is reduced, restricting GeO desorption at the GeO2 surface.

This is a preview of subscription content, access via your institution.

References

  1. 1

    J. T. Law, and P. S. Meigs, J. Electrochem. Soc. 104, 154 (1957).

    CAS  Article  Google Scholar 

  2. 2

    R. E. Schlier, and H. E. Farnsworth, J. Chem. Phys. 30, 917 (1959).

    CAS  Article  Google Scholar 

  3. 3

    C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. IEDM, 437 (2002).

  4. 4

    A. Ritenour , S. Yu, M. L. Lee, N. Lu, W. Bai, A. Pitera, E. A. Fitzgerald, D.-L. Kwong, and D. A. Antoniadis, Tech. Dig. IEDM, 433 (2004).

  5. 5

    W. P. Bai, N. Lu, and D.-L. Kwong, IEEE EDL 26, 378 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Y. Kamata, Materials Today 11, 30 (2008).

    Article  Google Scholar 

  7. 7

    C.H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, ECS Trans.(in press).

  8. 8

    C. Wagner, J. Appl. Phys. 29, 1295 (1958).

    CAS  Article  Google Scholar 

  9. 9

    E. A. Gulbransen and S. A. Jansson, Oxidation of Metals 4, 181 (1972).

    CAS  Article  Google Scholar 

  10. 10

    F. W. Smith and G. Ghidini, J. Electrochem. Soc. 129, 1300 (1982).

    CAS  Article  Google Scholar 

  11. 11

    A. Ishizuka and Y. Shiraki, J. Electrochem. Soc. 133, 666 (1986).

    Article  Google Scholar 

  12. 12

    B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    CAS  Article  Google Scholar 

  13. 13

    I. Barin, Thermodynamical Data of Pure Substances, PartI&II, VCH Verlags Gesellschaft, Weinheim, 1993.

    Google Scholar 

  14. 14

    N. Birks and G. H. Meier, Introduction to high temperature oxidation of metals, Edward Arnold, 1983, p. 42.

  15. 15

    M. K. Schurman and M. Tomozawa, J. Non-Crystal. Soids 202, 93 (1996).

    CAS  Article  Google Scholar 

  16. 16

    J. D. Kalen, R. S. Boyce, and J. D. Cawley, J. Am. Ceram. Soc. 74, 203 (1991).

    CAS  Article  Google Scholar 

  17. 17

    K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, Jpn. K. Appl. Phys. 47, 2349 (2008).

    CAS  Article  Google Scholar 

  18. 18

    K. A. Jackson, Kinetic Processes, Wiley-VCH, 2004, p.97.

  19. 19

    K. Kita, C. H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi, ECS Trans. 16, 187 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Nagashio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nagashio, K., Lee, C.H., Nishimura, T. et al. Thermodynamics and Kinetics for Suppression of GeO Desorption by High Pressure Oxidation of Ge. MRS Online Proceedings Library 1155, 602 (2008). https://doi.org/10.1557/PROC-1155-C06-02

Download citation