Electron Scattering in Buried InGaAs MOSFET Channel with HfO2 Gate Oxide


Group III-V semiconductor materials are being studied as potential replacements for conventional CMOS technology due to their better electron transport properties. However, the excess scattering of carriers in MOSFET channel due to high-k gate oxide interface significantly depreciates the benefits of III-V high-mobility channel materials. We present results on Hall electron mobility of buried QW structures influenced by remote scattering due to InGaAs/HfO2 interface. Mobility in In0.77Ga0.23As QWs degraded from 12000 to 1200 cm2/V-s and the mobility vs. temperature slope changed from T-1.2 to almost T+1.0 in 77-300 K range when the barrier thickness is reduced from 50 to 0 nm. This mobility change is attributed to remote Coulomb scattering due to charges and dipoles at semiconductor/oxide interface. Elimination of the InGaAs/HfO2 interface via introduction of SiOx interface layer formed by oxidation of thin a-Si passivation layer was found to improve the channel mobility. The mobility vs. sheet carrier density shows the maximum close to 2×1012 cm-2.

This is a preview of subscription content, access via your institution.


  1. 1

    R. Chau, in CS MANTECH Technical Digest, (Chicago, IL 2008), p. 15.

  2. 2

    R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and I. G. Thayne, IEEE Electron Dev. Lett. 28, 1080 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, Electron Dev. Lett. 28, 935 (2007).

    CAS  Article  Google Scholar 

  4. 4

    S. Oktyabrsky, S. Koveshnikov, V. Tokranov, M. Yakimov, R. Kambhampati, H. Bakhru, F. Zhu, J. Lee, and W. Tsai, Tech. Dig.- 65th Device Research Conference, 2007, p. 203.

  5. 5

    D. H. N. Goel, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, P. Majhi, and W. Tsai, in Tech. Dig. - Int. Electron Devices Meet. 2008, p.15.1.

  6. 6

    T. Matsuoka, E. Kobayashi, K. Taniguchi, C. Hamaguchi, and S. Sasa, Jpn. J. Appl. Phys. Part 1 29, 2017 (1990).

    CAS  Article  Google Scholar 

  7. 7

    M. A. Negara, K. Cherkaoui, P. Majhi, C. D. Young, W. Tsai, D. Bauza, G. Ghibaudo, and P. K. Hurley, Microelectron. Eng. 84, 1874 (2007).

    CAS  Article  Google Scholar 

  8. 8

    S. Barraud, L. Thevenod, M. Casse, O. Bonno, and M. Mouis, Microelectron. Eng. 84, 2404 (2007).

  9. 9

    K. Maitra, M. M. Frank, V. Narayanan, V. Misra, and E. A. Cartier, J. Appl. Phys. 102, 114507 (2007).

    Article  Google Scholar 

  10. 10

    S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J. C. Lee, Mater. Sci. Eng., B 135, 272 (2006).

    Article  Google Scholar 

  11. 11

    K. Lee, M. S. Shur, T. J. Drummond, and H. Morkoc, J. Appl. Phys. 54, 6432 (1983).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. Oktyabrsky.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oktyabrsky, S., Nagaiah, P., Tokranov, V. et al. Electron Scattering in Buried InGaAs MOSFET Channel with HfO2 Gate Oxide. MRS Online Proceedings Library 1155, 203 (2008). https://doi.org/10.1557/PROC-1155-C02-03

Download citation