Epitaxial Lanthanide Oxide based Gate Dielectrics

Abstract

Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm CMOS technology. We present results for crystalline gadolinium oxides on silicon in the cubic bixbyite structure grown by solid source molecular beam epitaxy. On Si(100), crystalline Gd2O3 grows usually as (110)-oriented domains, with two orthogonal in-plane orientations. Layers grown under best vacuum conditions often exhibit poor dielectric properties due to the formation of crystalline interfacial silicide inclusions. Additional oxygen supply during growth improves the dielectric properties significantly. Layers grown by an optimized MBE process display a sufficiently high-K value to achieve equivalent oxide thickness values < 1 nm, combined with ultra-low leakage current densities, good reliability, and high electrical breakdown voltage. A variety of MOS capacitors and field effect transistors has been fabricated based on these layers. Efficient manipulation of Si(100) 4° miscut substrate surfaces can lead to single domain epitaxial Gd2O3 layer. Such epi-Gd2O3 layers exhibited significant lower leakage currents compared to the commonly obtained epitaxial layers with two orthogonal domains. For capacitance equivalent thicknesses below 1 nm, this differences disappear, indicating that for ultrathin layers direct tunneling becomes dominating. We investigated the effect of post-growth annealings on layer properties. We showed that a standard forming gas anneal can eliminate flatband instabilities and hysteresis as well as reduce leakage currents by saturating dangling bond caused by the bonding mismatch. In addition, we investigated the impact of rapid thermal anneals on structural and electrical properties of crystalline Gd2O3 layers grown on Si with different orientations. The degradation of layers can be significantly reduced by sealing the layer with amorphous silicon prior to annealing.

This is a preview of subscription content, access via your institution.

References

  1. 1

    D.P. Norton, Mat. Sci & Engineer. R 43, 139 (2004).

    Google Scholar 

  2. 2

    G.-Y. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998).

    CAS  Article  Google Scholar 

  3. 3

    H.J. Osten, M. Czernohorsky, R. Dargis, A. Laha, D. Kühne, E. Bugiel, and A. Fissel, Microelectronic Engineering 84, 2222 (2007).

    CAS  Article  Google Scholar 

  4. 4

    The Oxide Handbook, 2nd Edition, ed. G.V. Samsonov (IFI/Plenum, New York 1982); G.Y. Adachi and N. Imanaka, Chem. Rev. 98, 1479 (1998).

    Google Scholar 

  5. 5

    J. Robertson and K. Xiong, Topics in Appl. Phys., 106, 313 (2007).

    CAS  Article  Google Scholar 

  6. 6

    M. Foëx and J.P. Traverse, Rev. Int. Hautes Temp. Refract. 3, 429 (1966).

    Google Scholar 

  7. 7

    M. Badylevich, S. Shamuilia, V. V. Afanas’ev, A. Stesmans, A. Laha, H. J. Osten, and A. Fissel, Appl. Phys. Lett. 90, 252101 (2007).

    Article  Google Scholar 

  8. 8

    M. Nolan, S. Grigoleit, D.C. Sayle, St.C. Parker G.W. Watson, Surf. Sci. 576, 217 (2005).

    CAS  Article  Google Scholar 

  9. 9

    I V. Mikhelashvili, G.Eisenstein, and F. Edelmann, J. Appl. Phys. 90, 5447 (2001).

    CAS  Article  Google Scholar 

  10. 10

    V.A. Rozhkov, A.Y. Trusova, and I.G. Berezhnoy, Thin Solid Films 325, 151 (1998).

    CAS  Article  Google Scholar 

  11. 11

    P. Delugas and V. Fiorentini, Microelectronics Reliability 45, 831 (2005).

    CAS  Article  Google Scholar 

  12. 12

    G. Seguini, E. Bonera, S. Spiga, G. Scarel, and M. Fanciulli, Appl. Phys. Lett., 85, 5316 (2004).

    CAS  Article  Google Scholar 

  13. 13

    W. Cai, S. E. Stone, J. P. Pelz, L. F. Edge and D. G. Schlom, Appl. Phys. Lett. 91, 042901 (2007).

    Article  Google Scholar 

  14. 14

    J. Kwo, M. Hong, A.R. Kortan, K.L. Queeny, Y.J. Chabal, R.L. Opila, D.A. Müller, S.N.G. Chu, J. Appl. Phys. 89, 3920 (2001).

    CAS  Article  Google Scholar 

  15. 15

    A. Fissel, H.J Osten, and E. Bugiel, J. Vac. Sci. Technol. B 21, 1765 (2003).

    Article  Google Scholar 

  16. 16

    H. J. Osten, E. Bugiel, M. Czernohorsky, Z. Elassar, O. Kirfel, and A. Fissel, Topics in Appl. Phys, 106, 101 (2007).

    CAS  Article  Google Scholar 

  17. 17

    A. Laha, H.J. Osten, and A. Fissel, Appl. Phys. Lett. 89, 143514 (2006).

    Article  Google Scholar 

  18. 18

    A. Fissel, Z. Elassar, E. Bugiel, M. Czernohorsky, O. Kirfel, and H. J. Osten, J. Appl. Phys. 99, 074105 (2006).

    Article  Google Scholar 

  19. 19

    D. Schmeisser, J. Dabrowski, H.-J. Muessig, Mater. Sci. Engin. B 109, 30 (2004).

    Article  Google Scholar 

  20. 20

    M. Czernohorsky, A. Fissel, E. Bugiel, O.Kirfel, and H.J. Osten, Appl. Phys. Lett. 88, 152905 (2006).

    Article  Google Scholar 

  21. 21

    A. Laha, H.J. Osten, and A. Fissel, Appl. Phys. Lett. 90, 113508 (2007).

    Article  Google Scholar 

  22. 22

    M.C. Lemme, H.D.B. Gottlob, T.J. Echtermeyer, H. Kurz, R. Endres, U. Schwalke, M. Czernohorsky, and H.J. Osten, J. Vac. Sci. & Technol. B 27, 258 (2009).

    Article  Google Scholar 

  23. 23

    T. Echtermeyer, H.D.B. Gottlob, T. Wahlbrink, T. Mollenhauer, M. Schmidt, J.K. Efavi, M.C. Lemme, and H. Kurz, Solid-State Electronics 51, 617 (2007).

    CAS  Article  Google Scholar 

  24. 24

    R. Endres, Y. Stefanov, and U. Schwalke, Microelectron. Reliab. 47, 528 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Q.-Q. Sun, A. Laha, S.-J. Ding, D. W. Zhang, H. J. Osten, and A. Fissel: Appl. Phys. Lett. 92, 152908 (2008).

    Article  Google Scholar 

  26. 26

    M. Czernohorsky, D. Tetzlaff, E. Bugiel, R. Dargis, H.J. Osten, H. D. B. Gottlob, M. Schmidt, M. C. Lemme, and H. Kurz, Semicond. Sci. & Technol. 23, 035010 (2008).

    Article  Google Scholar 

  27. 27

    J. Kwo, M. Hong, A. R. Kortan, K. T. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130 (2000).

    CAS  Article  Google Scholar 

  28. 28

    H. Kroemer, in Heteroepitaxy on Si, MRS Symposia Proceedings No. 67, edited by J. C. C. Fan and J. M. Poate (Materials Research Society, Pittsburgh, PA, 1986), and references therein.

  29. 29

    A. Laha, E. Bugiel, J.X. Wang, Q.Q. Sun, A. Fissel, and H.J. Osten, Appl. Phys. Lett. 93, 182907 (2008).

    Article  Google Scholar 

  30. 30

    H.J. Osten, J.P. Liu, E. Bugiel, H.J. Müssig, and P. Zaumseil, Mat Sci. & Engineer. B 87 (2001) 297.

    Article  Google Scholar 

  31. 31

    A. Laha, E. Bugiel, R. Dargis, D. Schwendt, M. Badylevich, V.V. Afanas’ev, A. Stesmans, A. Fissel, and H.J. Osten, Microelectronic Journal 40 (2009) 633.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Jörg Osten.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Osten, H.J., Laha, A. & Fissel, A. Epitaxial Lanthanide Oxide based Gate Dielectrics. MRS Online Proceedings Library 1155, 101 (2008). https://doi.org/10.1557/PROC-1155-C01-01

Download citation