Study of Solid/Liquid Interfaces in Organic Field-Effect Transistors with Ionic Liquids

Abstract

We report high-mobility rubrene single-crystal field-effect transistors with ionic-liquid electrolytes used for gate dielectric layers. As the result of fast ionic diffusion to form electric double layers, their capacitances remain more than 1.0 µF/cm2 even at 0.1 MHz. With high carrier mobility of 9.5 cm2/Vs in the rubrene crystal, pronounced current amplification is achieved at the gate voltage of only 0.2 V, which is two orders of magnitude smaller than that necessary for organic thin-film transistors with dielectric gate insulators. The results demonstrate that the ionic-liquid/organic semiconductor interfaces are suited to realize low-power and fast-switching field-effect transistors without sacrificing carrier mobility in forming the solid/liquid interfaces.

This is a preview of subscription content, access via your institution.

References

  1. 1

    G. Malliaras and R. Friend, Phys. Today. 58, 53 (2005).

    CAS  Article  Google Scholar 

  2. 2

    J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf Adv. Funct. Mater. 13, 193 (2003).

    Article  Google Scholar 

  3. 3

    M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 127, 6960 (2005).

    CAS  Article  Google Scholar 

  4. 4

    M. J. Panzer and C. D. Frisbie, Appl. Phys. Lett. 88, 203504 (2006).

    Article  Google Scholar 

  5. 5

    J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, S. Ikehata, and Y. Aoyagi, Appl. Phys. Lett. 88, 112102 (2006).

    Article  Google Scholar 

  6. 6

    H. Shimotani, H. Asanuma, J. Takeya, and Y. Iwasa, Appl. Phys. Lett. 89, 203501 (2006).

    Article  Google Scholar 

  7. 7

    E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, and M. Berggren, Appl. Phys. Lett. 89, 143507 (2006).

    Article  Google Scholar 

  8. 8

    J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, J. Am. Chem. Soc. 129, 4532 (2007).

    CAS  Article  Google Scholar 

  9. 9

    M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007).

    CAS  Article  Google Scholar 

  10. 10

    S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, Appl. Phys. Lett. 92, 103313 (2008).

    Article  Google Scholar 

  11. 11

    T. Uemura, R. Hirahara, Y. Tominari, S. Ono, S. Seki, and J. Takeya, Appl. Phys. Lett. 93, 263305 (2008).

    Article  Google Scholar 

  12. 12

    H. Shimotani, H. Asanuma, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Appl. Phys. Lett. 91, 082106 (2007).

    Article  Google Scholar 

  13. 13

    K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nature Mat. 7, 855 (2008).

    CAS  Article  Google Scholar 

  14. 14

    R. Misra, M. McCathy, and A. F. Hebard, Appl. Phys. Lett. 90, 052905 (2007).

    Article  Google Scholar 

  15. 15

    M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, J. Am. Chem. Soc. 127, 4976 (2005).

    CAS  Article  Google Scholar 

  16. 16

    S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and N. Terada, J. Electrochem, Soc. 154, A173 (2007).

    CAS  Article  Google Scholar 

  17. 17

    S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, and N. Terada, J. Electrochem, Soc. 154, A173 (2007).

    CAS  Article  Google Scholar 

  18. 18

    J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 98, 196804 (2007).

    CAS  Article  Google Scholar 

  19. 19

    E. Menard, V. Podzorov, S. H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. 16, 2097 (2004).

    CAS  Article  Google Scholar 

  20. 20

    J. Takeya, M. Yamagishi, Y. Tominari, R. HIrahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).

    Article  Google Scholar 

  21. 21

    A. F. Stassen, R. W. I. de Boer, N. N. Iosad, and A. F. Morpurgo, Appl. Phys. Lett. 85, 3899 (2004).

    CAS  Article  Google Scholar 

  22. 22

    I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nature Mat. 5, 982 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ono Shimpei.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shimpei, O., Shiro, S., Jun, T. et al. Study of Solid/Liquid Interfaces in Organic Field-Effect Transistors with Ionic Liquids. MRS Online Proceedings Library 1154, 515 (2008). https://doi.org/10.1557/PROC-1154-B05-15

Download citation