Imaging electron transport across grain boundaries in an integrated electron and atomic force microscopy platform: Application to polycrystalline silicon solar cells

Abstract

We have investigated the local electron transport in polycrystalline silicon (pc-Si) thin-films by atomic force microscopy (AFM)-based measurements of the electron-beam-induced current (EBIC). EVA solar cells are produced at UNSW by <i>EVAporation</i> of a-Si and subsequent <i>solid-phase crystallization</i>–a potentially cost-effective approach to the production of pc-Si photovoltaics. A fundamental understanding of the electron transport in these pc-Si thin films is of prime importance to address the factors limiting the efficiency of EVA solar cells. EBIC measurements performed in combination with an AFM integrated inside an electron microscope can resolve the electron transport across individual grain boundaries. AFM-EBIC reveals that most grain boundaries present a high energy barrier to the transport of electrons for both p-type and n-type EVA thin-films. Furthermore, for p-type EVA pc-Si, in contrast with n-type, charged grain boundaries are seen. Recombination at grain boundaries seems to be the dominant factor limiting the efficiency of these pc-Si solar cells.

References

  1. [1]

    K. R. Catchpole, M. J. McCann, K. J. Weber, and A. W. Blakers, Solar Energy Materials and Solar Cells 68, 173 (2001).

    CAS  Article  Google Scholar 

  2. [2]

    A. G. Aberle, Thin Solid Films 511-512, 26 (2006).

  3. [3]

    O. Nast, S. Brehme, D. H. Neuhaus, and S. R. Wenham, IEEE Trans. Electr. Dev. 46, 2062 (1999).

    CAS  Article  Google Scholar 

  4. [4]

    J. Stradal, G. Scholma, H. Li, C.H.M. van der Werf, J.K. Rath, P.I. Widenborg, P. Campbell, A.G. Aberle and R.E.I. Schropp, Thin Solid Films 501, 335 (2006).

    CAS  Article  Google Scholar 

  5. [5]

    C. W. Teplin, H. M. Branz, K. M. Jones, M. J. Romero, P. Stradins, and S. Gall, Mat. Res. Soc. Symp. Proc. 989, 133 (2007).

    CAS  Google Scholar 

  6. [6]

    A. G. Aberle, A. Straub, P. I. Widenborg, A. B. Sproul, Y. Huang, and P. Campbell, Prog. in Photovolt: Res. and Appl. 13, 37 (2005).

    CAS  Article  Google Scholar 

  7. [7]

    M. L. Terry, A. Straub, D. Inns, D. Song, and A. G. Aberle, Appl. Phys. Lett. 86, 172108 (2005).

    Article  Google Scholar 

  8. [8]

    P. I. Widenborg and A. G. Aberle, J. Crystal Growth 306, 177 (2007).

    CAS  Article  Google Scholar 

  9. [9]

    F. Liu, M. J. Romero, K. M. Jones, A. G. Norman, M. M. Al-Jassim, D. Inns, and A. G. Aberle, Thin Solid Films 516, 6409 (2008).

    CAS  Article  Google Scholar 

  10. [10]

    A. G. Aberle, Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006, p. 738.

  11. [11]

    M. Troyon and K. Smaali, Appl. Phys. Lett. 90, 212110 (2007).

    Article  Google Scholar 

  12. [12]

    B-doped p-type films can be partially compensated because of residual phosphorous contamination in the deposition chamber.

  13. [13]

    D. B. Holt, B. Raza, and A. Wojcik, Materials Science and Engineering B42, 14 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. J. Romero.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romero, M.J., Liu, F., Kunz, O. et al. Imaging electron transport across grain boundaries in an integrated electron and atomic force microscopy platform: Application to polycrystalline silicon solar cells. MRS Online Proceedings Library 1153, 1503 (2008). https://doi.org/10.1557/PROC-1153-A15-03

Download citation