Nanocrystalline Silicon Superlattice Solar cells


We report on the growth and properties of nanocrystalline Si superlattice solar cells. The solar cells consisted of a stack of alternating layers of amorphous and nanocrystalline Si. The thickness of each of the two layers in the superlattice structure was varied independently. It was found that when the nanocrystalline layer thickness was low, increasing the thickness of the amorphous layer in the superlattice systematically reduced the <220> grain size, while the <111> grain size remained essentially invariant. This fact shows that by interposing an amorphous layer between two nanocrystalline layers forces the nano grains to renucleate and regrow. It was also found that when the amorphous Si layer was too thick, there were significant problems with hole transport through the device. Measurements of defect densities and effective diffusion lengths showed that there was an optimum thickness of the amorphous layer (about 10 nm) for which the defect density was the lowest and the diffusion length was the highest. We also show that the absorption coefficient in nano Si depends upon the grain size and can be increased significantly by increasing the grain size.

This is a preview of subscription content, access via your institution.


  1. 1

    Y. Tawada, H. Yamagishi and K. Yamamoto, Solar Energy Materials and Solar Cells, 78, 647(2003)

    CAS  Article  Google Scholar 

  2. 2

    B. Rech, O. Kluth, T. Repmann, T. Roschek, J. Springer, J. Müller, F. Finger, H. Stiebig and H. Wagner, Solar Energy Materials and Solar Cells, 74, 439 (2002)

    CAS  Article  Google Scholar 

  3. 3

    A. V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and U. Graf, Solar Energy Materials and Solar Cells, 78, 469 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Vikram L. Dalal, U.S. Patent 4,253,882 “High efficiency thin-film multiple-gap photovoltaic device” (1981)

  5. 5

    T. Repmann, B. Sehrbrock, C. Zahren, H. Siekmann and B. Rech, Solar Energy Materials and Solar Cells, 90, 3047, (2006)

    CAS  Article  Google Scholar 

  6. 6

    R. Biswas, B. C. Pan, V. Selvaraj , Proc. Of MRS, Vol. 862, 133(2005)

    CAS  Article  Google Scholar 

  7. 7

    J. Kočka, A. Fejfar, H. Stuchlíková, J. Stuchlík, P. Fojtík, T. Mates, B. Rezek, K. Luterová, V. Švrček and I. Pelant, Solar Energy Materials and Solar cells, 78, 493(2003)

    Article  Google Scholar 

  8. 8

    B. J. Yan, G. Z. Yue, Yang J and S. Guha , Appl. Phys. Lett. 85,1955 (2004)

    CAS  Article  Google Scholar 

  9. 9

    Vikram L. Dalal, J. Graves and J. Leib, Appl. Phys. Lett., 85, 1413(2004)

    CAS  Article  Google Scholar 

  10. 10

    A. Madhavan and V. L. Dalal, J. Non-Cryst. Solids, 354, 2403-2406(2008)

    Article  Google Scholar 

  11. 11

    C. Smit C, RACCM van Swaaij , H. Donker , AMHN Petit , WMM Kessels , MCM van de Sanden., J. Appl. Phys. 94 ,3582( 2003 )

    CAS  Article  Google Scholar 

  12. 12

    Vikram Dalal and Puneet Sharma, Appl. Phys. Lett. 86, 103510 (2005)

    Article  Google Scholar 

  13. 13

    Vikram Dalal, Kamal Muthukrishnan, Xuejun Niu and Daniel Stieler, J. Non-Cryst. Solids, 352, 892(2006)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Atul Madhavan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Madhavan, A., Chakravarty, N. & Dalal, V.L. Nanocrystalline Silicon Superlattice Solar cells. MRS Online Proceedings Library 1153, 1006 (2008).

Download citation