Novel Technique to Determine Elastic Constants of Thin Films


A new X-ray diffraction technique to determine elastic moduli of polycrystalline thin films deposited on monocrystalline substrates is demonstrated. The technique is based on the combination of sin2ψ and X-ray diffraction wafer curvature techniques which are used to characterize X-ray elastic strains and macroscopic stress in thin film. The strain measurements must be performed for various hkl reflections. The stresses are determined from the substrate curvature applying the Stoney’s equation. The stress and strain values are used to calculate hkl reflection dependent X-ray elastic moduli. The mechanical elastic moduli can be then extrapolated from X-ray elastic moduli considering film macroscopic elastic anisotropy. The derived approach shows for which reflection and corresponding value of the X-ray anisotropic factor Γ the X-ray elastic moduli are equal to their mechanical counterparts in the case of fibre textured cubic polycrystalline aggregates. The approach is independent of the crystal elastic anisotropy and depends on the fibre texture type, the texture sharpness, the amount of randomly oriented crystallites and on the supposed grain interaction model. The new method is demonstrated on a fiber textured Cu thin film deposited on monocrystalline Si(100) substrate. The advantage of the new technique remains in the fact that moduli are determined non-destructively, using a static diffraction experiment and represent volume averaged quantities.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    S. Suresh, L.B. Freund, Thin Film Materials Stress, Defect Formation and Surface Evolution. Cambridge: Cambridge University Press (2003).

    Google Scholar 

  2. 2.

    A. Cavaleiro, J. T. De Hosson, Nanostructured Coatings. New York: Springer (2006).

    Google Scholar 

  3. 3.

    E. Eiper, K.J. Martinschitz, J.W. Gerlach, J.M. Lackner, I. Zizak, N. Darowski, J. Keckes, Z.Metallkd. 96, 1069 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    E. Eiper, K.J. Martinschitz, J. Keckes, Powder Diffr. 21, 25 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    K.J. Martinschitz, E. Eiper, S. Massl, H. Kostenbauer, R Daniel, G. R., Fontalvo, C. Mitterer, and J. Keckes, J. Appl. Cryst. 39, 777 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    R. Hill, Proc. Phys. Soc. London, Sect A 65, 349 (1952).

    Article  Google Scholar 

  7. 7.

    P. van Houtte and L. De Buyser, Acta metall. mater. 41, 323 (1993).

    Article  Google Scholar 

  8. 8.

    F. Bollenrath, V. Hauk, E.H. Müller, Z. MetaIlkd. 58, 76 (1967).

    CAS  Google Scholar 

  9. 9.

    A. Reuss, Z.Angew. Math.Mech. 9, 49 (1929).

    CAS  Article  Google Scholar 

  10. 10.

    I.C. Noyan, J.B. Cohen, Residual Stress Measurement by Diffraction and Interpretation. Springer. (1987).

    Google Scholar 

  11. 11.

    G.G. Stoney, P. Roy. Soc.Lond. A 82, 172 (1909).

    CAS  Article  Google Scholar 

  12. 12.

    J. Keckes, E. Eiper, K.J. Martinschitz, H. Koestenbauer, R. Daniel, C. Mitterer, Rev.Sci. Instrum. 78, 036103 (2007).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. Keckes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martinschitz, K.J., Daniel, R., Mitterer, C. et al. Novel Technique to Determine Elastic Constants of Thin Films. MRS Online Proceedings Library 1139, 331 (2008).

Download citation