BioMEMS Technologies for Regenerative Medicine


The emergence of BioMEMS fabrication technologies such as soft lithography, micromolding and assembly of 3D structures, and biodegradable microfluidics, are already making significant contributions to the field of regenerative medicine. Over the past decade, BioMEMS have evolved from early silicon laboratory devices to polymer-based structures and even biodegradable constructs suitable for a range of ex vivo and in vivo applications. These systems are still in the early stages of development, but the long-term potential of the technology promises to enable breakthroughs in health care challenges ranging from the systemic toxicity of drugs to the organ shortage. Ex vivo systems for organ assist applications are emerging for the liver, kidney and lung, and the precision and scalability of BioMEMS fabrication techniques offer the promise of dramatic improvements in device performance and patient outcomes.

Ultimately, the greatest benefit from BioMEMS technologies will be realized in applications for implantable devices and systems. Principal advantages include the extreme levels of achievable miniaturization, integration of multiple functions such as delivery, sensing and closed loop control, and the ability of precision microscale and nanoscale features to reproduce the cellular microenvironment to sustain long-term functionality of engineered tissues. Drug delivery systems based on BioMEMS technologies are enabling local, programmable control over drug concentrations and pharmacokinetics for a broad spectrum of conditions and target organs. BioMEMS fabrication methods are also being applied to the development of engineered tissues for applications such as wound healing, microvascular networks and bioartificial organs. Here we review recent progress in BioMEMS-based drug delivery systems, engineered tissue constructs and organ assist devices for a range of ex vivo and in vivo applications in regenerative medicine.

This is a preview of subscription content, access via your institution.


  1. 1.

  2. 2.

    W.M. Saltzman, Drug Delivery (Oxford Univ.Press, Oxford UK, 2001.)

    Google Scholar 

  3. 3.

    S.L. Tao and T.A. Desai, ADV. MATER. 17 1625 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    D.V. McAllister, P.M. Wang, S.P. Davis, J-H Park, P.J. Canatella, M.G. Allen and M.R. Prausnitz, Proc. Nat. Acad. Soc. 100 13755 (2003).

    CAS  Article  Google Scholar 

  5. 5.

    S. Kaushik, A.H. Hord, D.D. Denson, D.V. McAllister, S. Smitra, M.G. Allen and M.R. Prausnitz, Anest. Analg. 92 502 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    J.D. Zahn, A.A. Desmukh, A.P. Pisano and D. Liepmann, Biomed. Microdev. 6 183 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    A.J. Chung, D. Kim and D. Erickson, Lab. Chip. 8 330 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    D.T. Eddington and D.J. Beebe, Ieee Jmems 13 586 (2004)

    Google Scholar 

  9. 9.

  10. 10.

    Z. Chen, S.G. Kujawa, M.J. McKenna, J.O. Fiering, M.J. Mescher, J.T. Borenstein, E.E. Swan and W.F. Sewell, J. Controlled Release 110 1 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    J. Fiering, M.J. Mescher, E.E.L. Swan, M.E. Holmboe, B.A. Murphy, Z. Chen, M. Peppi, W.F. Sewell, M.J. McKenna, S.G. Kujawa and J.T. Borenstein, Biomedical Microdevices, in press.

  12. 12.

    J. Santini, M. Cima and R. Langer, Nature 397 335 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    S.K.W. Dertinger, X. Jiang, Z. Li, V.N. Murthy and G.M. Whitesides, Proc. Nat. Acad. Sci. 99, 12542 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman and P.F. Nealey, Biomaterials 20, 573 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    C.J. Bettinger, B. Orrick, A. Misra, R. Langer and J.T. Borenstein, Biomaterials, 27, 2558 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    S.R. Khetani and S.N. Bhatia, Nature Biotech. 26 120 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    A. Cararro, W.M. Hsu, K.M. Kulig, W.S. Cheung, M.L. Miller, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.T. Borenstein, J.P. Vacanti and C. Neville . Biomed. Microdevices 10 795 (2008).

    Article  Google Scholar 

  18. 18.

    H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith and K.F. Jensen, Anal. Chem. 76 5257 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner, Faseb J 13 1883 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    E.E. Hui and S.N. Bhatia, Proc. Nat. Acad. Sci. 104 5722 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    M.J. Powers, D.M. Janigian, K.E. Wack, C.S. Baker, D. Beer Stolz and L.G. Griffith, Tissue Engineering 8 499 (2002).

    Article  Google Scholar 

  22. 22.

    M. Zhang, P.J. Lee, P.J. Hung, T. Johnson, L.P. Lee and M.R. Kaazempur-Mofrad, Biomedical Microdevices 10 117 (2008).

    Article  Google Scholar 

  23. 23.

    V. Viravaidya, A. Sin and M.L. Shuler, Biotechnol. Progress 20 316 (2004).

    CAS  Article  Google Scholar 

  24. 24.

    A. Khademhosseini, J.T. Borenstein, R. Langer and J.P. Vacanti, Proc. Nat. Acad. Sci. 103 2480 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad and J.P. Vacanti, Biomedical Microdevices 4 167 (2002)

    CAS  Article  Google Scholar 

  26. 26.

    G.J. Wang, C.L. Chen, S.H. Hsu and Y.L. Chiang, Microsyst. Technol. 12 120 (2005).

    CAS  Article  Google Scholar 

  27. 27.

    K.R. King, C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti and J.T. Borenstein, Adv. Mater. 16 2007 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    C. Fidkowski, M.R. Kaazempur-Mofrad, J.T. Borenstein, J.P. Vacanti, R. Langer and Y. Wang Tissue Engineering 11 30 (2005).

    Article  Google Scholar 

  29. 29.

    M. Cabodi, N.W. Choi, J.P. Gleghorn, C.S. Lee, L.J. Bonassar and A.D. Stroock, J. Amer. Chem. Soc. 127 13788 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    K.M. Chrobak, D.R. Potter and J. Tien, Microvasc. Res. 71 185 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    J.L. Charest, M.T. Eliason, A.J. Garcia and W.P. King, Biomaterials 27 2487 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    N. Gomez, S. Chen and C.E. Schmidt, J.R. Soc. Interface 13 223 (2007).

    Article  Google Scholar 

  33. 33.

    M.R. Kaazempur-Mofrad, E.J. Weinberg, J.T. Borenstein and J.P. Vacanti, “Tissue Engineering: Multi-Scaled Representation of Tissue Architecture and Function”, in Complex Systems Science in Biomedicine, (Kluwer Academic - Plenum Publishers, New York, 2003.)

    Google Scholar 

  34. 34.

    R. Iyer, B. Plouffe, S.K. Murthy and M. Radisic, “Microreactors for Cardiac Tissue Engineering”, in Micro and Nanoengineering of the Cell Microenvironment, eds. A. Khademhosseini, J.T. Borenstein, M. Toner and S. Takayama (Artech House, Boston, 2008.)

    Google Scholar 

  35. 35.

    G.C. Engelmayr Jr ., M. Cheng, C. J. Bettinger, J. T. Borenstein, R. Langer, and L. E. Freed, Nature Materials Nov 2 2008 (DOI:10.1038/nmat2316).

  36. 36.

    M.R. Kaazempur-Mofrad, N.J. Krebs, J.P. Vacanti and J.T. Borenstein, PROC. 2004 Sensors and Actuators Conf., (Transducers Research Foundation, Cleveland OH, 2004.)

    Google Scholar 

  37. 37.

    K.H. Lee, D.J. Kim, B.G. Min and S.H. Lee, Biomedical Microdevices 9 435 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    A.R. Nissenson, C. Ronco, G. Pergamit, M. Edelstein and R. Watts, Hemodialysis Int’l. 9 210 (2005).

    Article  Google Scholar 

  39. 39.

    R. Baudoin, L. Griscom, M. Monge, C. Legallais and E. Leclerc, Biotechnol. Prog. 23 1245 (2007).

    CAS  Google Scholar 

  40. 40.

    H.D. Humes, W.H. Fissell and K. Tiranathanagul, Kidney Intl. 69 1115 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    J. Park, Y. Li, F. Berthiaume, M. Toner, M.L. Yarmush and A.W. Tilles, Biotechnol. Bioeng. 90 632 (2005).

    CAS  Article  Google Scholar 

  42. 42.

    K.A. Burgess, H.H. Hu, W.R. Wagner and W.J. Federspiel, Biomedical Microdevices Epub, PMID 18696229, 2008.

  43. 43.

    D.M. Hoganson, J. Anderson, B. Orrick and J.P. Vacanti, Amer. Assoc. Thoracic Surgery Conf., 2008.

Download references

Author information



Corresponding author

Correspondence to T. Borenstein Jeffrey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jeffrey, T.B. BioMEMS Technologies for Regenerative Medicine. MRS Online Proceedings Library 1139, 201 (2008).

Download citation